ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial control of laser-induced doping profiles in graphene on hexagonal boron nitride

104   0   0.0 ( 0 )
 نشر من قبل Christoph Neumann
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a method to create and erase spatially resolved doping profiles in graphene-hexagonal boron nitride (hBN) heterostructures. The technique is based on photo-induced doping by a focused laser and does neither require masks nor photo resists. This makes our technique interesting for rapid prototyping of unconventional electronic device schemes, where the spatial resolution of the rewritable, long-term stable doping profiles is only limited by the laser spot size (~600 nm) and the accuracy of sample positioning. Our optical doping method offers a way to implement and to test different, complex doping patterns in one and the very same graphene device, which is not achievable with conventional gating techniques.



قيم البحث

اقرأ أيضاً

334 - L. Ju , J. Velasco Jr. , E. Huang 2014
The design of stacks of layered materials in which adjacent layers interact by van der Waals forces[1] has enabled the combination of various two-dimensional crystals with different electrical, optical and mechanical properties, and the emergence of novel physical phenomena and device functionality[2-8]. Here we report photo-induced doping in van der Waals heterostructures (VDHs) consisting of graphene and boron nitride layers. It enables flexible and repeatable writing and erasing of charge doping in graphene with visible light. We demonstrate that this photo-induced doping maintains the high carrier mobility of the graphene-boron nitride (G/BN) heterostructure, which resembles the modulation doping technique used in semiconductor heterojunctions, and can be used to generate spatially-varying doping profiles such as p-n junctions. We show that this photo-induced doping arises from microscopically coupled optical and electrical responses of G/BN heterostructures, which includes optical excitation of defect transitions in boron nitride, electrical transport in graphene, and charge transfer between boron nitride and graphene.
The integrated inplane growth of two dimensional materials with similar lattices, but distinct electrical properties, could provide a promising route to achieve integrated circuitry of atomic thickness. However, fabrication of edge specific GNR in th e lattice of hBN still remains an enormous challenge for present approaches. Here we developed a two step growth method and successfully achieved sub 5 nm wide zigzag and armchair GNRs embedded in hBN, respectively. Further transport measurements reveal that the sub 7 nm wide zigzag GNRs exhibit openings of the band gap inversely proportional to their width, while narrow armchair GNRs exhibit some fluctuation in the bandgap width relationship.This integrated lateral growth of edge specific GNRs in hBN brings semiconducting building blocks to atomically thin layer, and will provide a promising route to achieve intricate nanoscale electrical circuits on high quality insulating hBN substrates.
321 - S. Engels , A. Epping , C. Volk 2013
We report on the fabrication and characterization of etched graphene quantum dots (QDs) on hexagonal boron nitride (hBN) and SiO2 with different island diameters. We perform a statistical analysis of Coulomb peak spacings over a wide energy range. Fo r graphene QDs on hBN, the standard deviation of the normalized peak spacing distribution decreases with increasing QD diameter, whereas for QDs on SiO2 no diameter dependency is observed. In addition, QDs on hBN are more stable under the influence of perpendicular magnetic fields up to 9T. Both results indicate a substantially reduced substrate induced disorder potential in graphene QDs on hBN.
Nanoscale control of charge doping in two-dimensional (2D) materials permits the realization of electronic analogs of optical phenomena, relativistic physics at low energies, and technologically promising nanoelectronics. Electrostatic gating and che mical doping are the two most common methods to achieve local control of such doping. However, these approaches suffer from complicated fabrication processes that introduce contamination, change material properties irreversibly, and lack flexible pattern control. Here we demonstrate a clean, simple, and reversible technique that permits writing, reading, and erasing of doping patterns for 2D materials at the nanometer scale. We accomplish this by employing a graphene/boron nitride (BN) heterostructure that is equipped with a bottom gate electrode. By using electron transport and scanning tunneling microscopy (STM), we demonstrate that spatial control of charge doping can be realized with the application of either light or STM tip voltage excitations in conjunction with a gate electric field. Our straightforward and novel technique provides a new path towards on-demand graphene pn junctions and ultra-thin memory devices.
When a crystal is subjected to a periodic potential, under certain circumstances (such as when the period of the potential is close to the crystal periodicity; the potential is strong enough, etc.) it might adjust itself to follow the periodicity of the potential, resulting in a, so called, commensurate state. Such commensurate-incommensurate transitions are ubiquitous phenomena in many areas of condensed matter physics: from magnetism and dislocations in crystals, to vortices in superconductors, and atomic layers adsorbed on a crystalline surface. Of particular interest might be the properties of topological defects between the two commensurate phases: solitons, domain walls, and dislocation walls. Here we report a commensurate-incommensurate transition for graphene on top of hexagonal boron nitride (hBN). Depending on the rotational angle between the two hexagonal lattices, graphene can either stretch to adjust to a slightly different hBN periodicity (the commensurate state found for small rotational angles) or exhibit little adjustment (the incommensurate state). In the commensurate state, areas with matching lattice constants are separated by domain walls that accumulate the resulting strain. Such soliton-like objects present significant fundamental interest, and their presence might explain recent observations when the electronic, optical, Raman and other properties of graphene-hBN heterostructures have been notably altered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا