ﻻ يوجد ملخص باللغة العربية
Mg II lines represent one of the strongest emissions from the chromospheric plasma during solar flares. In this article, we studied the Mg II lines observed during the X1 flare on March 29 2014 (SOL2014-03-29T17:48) by IRIS. IRIS detected large intensity enhancements of the Mg II h and k lines, subordinate triplet lines, and several other metallic lines at the flare footpoints during this flare. We have used the advantage of the slit-scanning mode (rastering) of IRIS and performed, for the first time, a detailed analysis of spatial and temporal variations of the spectra. Moreover, we were also able to identify positions of strongest HXR emissions using RHESSI observations and to correlate them with the spatial and temporal evolution of Mg II spectra. The light curves of the Mg II lines increase and peak contemporarily with the HXR emissions but decay more gradually. There are large red asymmetries in the Mg II h and k lines after the flare peak. We see two spatially well separated groups of Mg II line profiles, non-reversed and reversed. In some cases, the Mg II footpoints with reversed profiles are correlated with HXR sources. We show the spatial and temporal behavior of several other line parameters (line metrics) and briefly discuss them. Finally, we have synthesized the Mg II k line using our non-LTE code with the MALI technique. Two kinds of models are considered, the flare model F2 of Machado et al. (1980) and the models of Ricchiazzi and Canfield (1983). Model F2 reproduces the peak intensity of the unreversed Mg II k profile at flare maximum but does not account for high wing intensities. On the other hand, the RC models show the sensitivity of Mg II line intensities to various electron-beam parameters. Our simulations also show that the microturbulence produces a broader line core, while the intense line wings are caused by an enhanced line source function.
The Interface Region Imaging Spectrometer (IRIS) is the first solar instrument to observe $sim 10$ MK plasma at subarcsecond spatial resolution through imaging spectroscopy of the Fe XXI $lambda$1354.1 forbidden line. IRIS observations of the X1 clas
The Interface Region Imaging Spectrograph (IRIS) small explorer spacecraft provides simultaneous spectra and images of the photosphere, chromosphere, transition region, and corona with 0.33-0.4 arcsec spatial resolution, 2 s temporal resolution and 1
On 2014 March 29, an intense solar flare classified as X1.0 occurred in the active region 12017. Several associated phenomena accompanied this event, among them a fast-filament eruption, large-scale propagating disturbances in the corona and the chro
We present high spatial resolution observations of chromospheric evaporation in the flare SOL2014-03-29T17:48. Interface Region Imaging Spectrograph (IRIS) observations of the FeXXI 1354.1 A line indicate evaporating plasma at a temperature of 10 MK
The bulk of the radiative output of a solar flare is emitted from the chromosphere, which produces enhancements in the optical and UV continuum, and in many lines, both optically thick and thin. We have, until very recently, lacked observations of tw