ترغب بنشر مسار تعليمي؟ اضغط هنا

I/O Efficient Core Graph Decomposition at Web Scale

121   0   0.0 ( 0 )
 نشر من قبل Lu Qin
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Core decomposition is a fundamental graph problem with a large number of applications. Most existing approaches for core decomposition assume that the graph is kept in memory of a machine. Nevertheless, many real-world graphs are big and may not reside in memory. In the literature, there is only one work for I/O efficient core decomposition that avoids loading the whole graph in memory. However, this approach is not scalable to handle big graphs because it cannot bound the memory size and may load most parts of the graph in memory. In addition, this approach can hardly handle graph updates. In this paper, we study I/O efficient core decomposition following a semi-external model, which only allows node information to be loaded in memory. This model works well in many web-scale graphs. We propose a semi-external algorithm and two optimized algorithms for I/O efficient core decomposition using very simple structures and data access model. To handle dynamic graph updates, we show that our algorithm can be naturally extended to handle edge deletion. We also propose an I/O efficient core maintenance algorithm to handle edge insertion, and an improved algorithm to further reduce I/O and CPU cost by investigating some new graph properties. We conduct extensive experiments on 12 real large graphs. Our optimal algorithm significantly outperform the existing I/O efficient algorithm in terms of both processing time and memory consumption. In many memory-resident graphs, our algorithms for both core decomposition and maintenance can even outperform the in-memory algorithm due to the simple structures and data access model used. Our algorithms are very scalable to handle web-scale graphs. As an example, we are the first to handle a web graph with 978.5 million nodes and 42.6 billion edges using less than 4.2 GB memory.



قيم البحث

اقرأ أيضاً

A challenge for data imputation is the lack of knowledge. In this paper, we attempt to address this challenge by involving extra knowledge from web. To achieve high-performance web-based imputation, we use the dependency, i.e.FDs and CFDs, to impute as many as possible values automatically and fill in the other missing values with the minimal access of web, whose cost is relatively large. To make sufficient use of dependencies, We model the dependency set on the data as a graph and perform automatical imputation and keywords generation for web-based imputation based on such graph model. With the generated keywords, we design two algorithms to extract values for imputation from the search results. Extensive experimental results based on real-world data collections show that the proposed approach could impute missing values efficiently and effectively compared to existing approach.
368 - Jiping Yu , Wei Qin , Xiaowei Zhu 2021
With the magnitude of graph-structured data continually increasing, graph processing systems that can scale-out and scale-up are needed to handle extreme-scale datasets. While existing distributed out-of-core solutions have made it possible, they suf fer from limited performance due to excessive I/O and communication costs. We present DFOGraph, a distributed fully-out-of-core graph processing system that applies and assembles multiple techniques to enable I/O- and communication-efficient processing. DFOGraph builds upon two-level column-oriented partition with adaptive compressed representations to allow fine-grained selective computation and communication, and it only issues necessary disk and network requests. Our evaluation shows DFOGraph achieves performance comparable to GridGraph and FlashGraph (>2.52x and 1.06x) on a single machine and outperforms Chaos and HybridGraph significantly (>12.94x and >10.82x) when scaling out.
The ROOT TTree data format encodes hundreds of petabytes of High Energy and Nuclear Physics events. Its columnar layout drives rapid analyses, as only those parts (branches) that are really used in a given analysis need to be read from storage. Its u nique feature is the seamless C++ integration, which allows users to directly store their event classes without explicitly defining data schemas. In this contribution, we present the status and plans of the future ROOT 7 event I/O. Along with the ROOT 7 interface modernization, we aim for robust, where possible compile-time safe C++ interfaces to read and write event data. On the performance side, we show first benchmarks using ROOTs new experimental I/O subsystem that combines the best of TTrees with recent advances in columnar data formats. A core ingredient is a strong separation of the high-level logical data layout (C++ classes) from the low-level physical data layout (storage backed nested vectors of simple types). We show how the new, optimized physical data layout speeds up serialization and deserialization and facilitates parallel, vectorized and bulk operations. This lets ROOT I/O run optimally on the upcoming ultra-fast NVRAM storage devices, as well as file-less storage systems such as object stores.
Recent studies showed that single-machine graph processing systems can be as highly competitive as cluster-based approaches on large-scale problems. While several out-of-core graph processing systems and computation models have been proposed, the hig h disk I/O overhead could significantly reduce performance in many practical cases. In this paper, we propose GraphMP to tackle big graph analytics on a single machine. GraphMP achieves low disk I/O overhead with three techniques. First, we design a vertex-centric sliding window (VSW) computation model to avoid reading and writing vertices on disk. Second, we propose a selective scheduling method to skip loading and processing unnecessary edge shards on disk. Third, we use a compressed edge cache mechanism to fully utilize the available memory of a machine to reduce the amount of disk accesses for edges. Extensive evaluations have shown that GraphMP could outperform existing single-machine out-of-core systems such as GraphChi, X-Stream and GridGraph by up to 51, and can be as highly competitive as distributed graph engines like Pregel+, PowerGraph and Chaos.
147 - Ye Yuan , Guoren Wang , Lei Chen 2012
Many studies have been conducted on seeking the efficient solution for subgraph similarity search over certain (deterministic) graphs due to its wide application in many fields, including bioinformatics, social network analysis, and Resource Descript ion Framework (RDF) data management. All these works assume that the underlying data are certain. However, in reality, graphs are often noisy and uncertain due to various factors, such as errors in data extraction, inconsistencies in data integration, and privacy preserving purposes. Therefore, in this paper, we study subgraph similarity search on large probabilistic graph databases. Different from previous works assuming that edges in an uncertain graph are independent of each other, we study the uncertain graphs where edges occurrences are correlated. We formally prove that subgraph similarity search over probabilistic graphs is #P-complete, thus, we employ a filter-and-verify framework to speed up the search. In the filtering phase,we develop tight lower and upper bounds of subgraph similarity probability based on a probabilistic matrix index, PMI. PMI is composed of discriminative subgraph features associated with tight lower and upper bounds of subgraph isomorphism probability. Based on PMI, we can sort out a large number of probabilistic graphs and maximize the pruning capability. During the verification phase, we develop an efficient sampling algorithm to validate the remaining candidates. The efficiency of our proposed solutions has been verified through extensive experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا