ﻻ يوجد ملخص باللغة العربية
The Milestoning algorithm created by Ron Elber et al. is a method for determining the time scale of processes too complex to be studied using brute force simulation methods. The fundamental objects implemented in the Milestoning algorithm are the first passage time distributions between adjacent protein configuration milestones. The method proposed herein aims to further enhance Milestoning by employing an artificial applied force, akin to wind, which pushes the trajectories from their initial states to their final states, and subsequently re-weights the trajectories to yield the true first passage time distributions in a fraction of the computation time required for unassisted calculations. The re-weighting method, rooted in Itos stochastic calculus, was adapted from previous work by Andricioaei et al. The theoretical basis for this technique and numerical examples are presented.
The Milestoning method has achieved great success in the calculation of equilibrium kinetic properties such as rate constants from molecular dynamics simulations. The goal of this work is to advance Milestoning into the realm of non-equilibrium stati
The concepts of weighted reciprocal of temperature and weighted thermal flux are proposed for a heat engine operating between two heat baths and outputting mechanical work. With the aid of these two concepts, the generalized thermodynamic fluxes and
We consider natural inflation in a warm inflation framework with a temperature-dependent dissipative coefficient $Gamma propto T^3$. Natural inflation can be compatible with the Planck 2018 results with such warm assistance. With no a priori assumpti
We introduce an assisted exchange model (AEM) on a one dimensional periodic lattice with (K+1) different species of hard core particles, where the exchange rate depends on the pair of particles which undergo exchange and their immediate left neighbor
Traffic fluctuation has so far been studied on unweighted networks. However many real traffic systems are better represented as weighted networks, where nodes and links are assigned a weight value representing their physical properties such as capaci