ﻻ يوجد ملخص باللغة العربية
KIMS-NaI is a direct detection experiment searching for Weakly Interacting Massive Particles (WIMP) via their scattering off of nuclei in a NaI(Tl) crystal. The KIMS-NaI collaboration has carried out tests of six crystals in the Yangyang underground laboratory in order to develope low-background NaI(Tl) crystals. Studies of internal backgrounds crystals have been performed with the goal of reducing backgrounds levels to 1 dru at 2 keV. Pulse shape discrimination (PSD) capabilities were also investigated for distinguishing between WIMP nuclear recoil signals and electron recoil backgrounds. The PSD analysis was applied to underground data with one low background NaI(Tl) detector and the evaluation of WIMP mass limit is ongoing.
The Korea Invisible Mass Search (KIMS) collaboration has developed low-background NaI(Tl) crystals that are suitable for the direct detection of WIMP dark matter. With experience built on the KIMS-CsI programs, the KIMS-NaI experiment will consist of
The PIENU experiment at TRIUMF aims to measure the pion decay branching ratio $R={Gamma}({pi}^+{rightarrow}e^+{ u}_e({gamma}))/{Gamma}({pi}^+{rightarrow}{mu}^+{ u}_{mu}({gamma}))$ with precision $<0.1$% to provide a sensitive test of electron-muon un
The JSNS$^2$ experiment aims to search for the existence of neutrino oscillations with $Delta {rm m}^2$ near 1 eV$^2$ at the J-PARC Materials and Life Science Experimental Facility (MLF). A 3~GeV 1~MW proton beam incident on a mercury target produces
The determination of the neutrino mass hierarchy, whether the $ u _3$ neutrino mass eigenstate is heavier or lighter than the $ u _1$ and $ u _2$ mass eigenstates, is one of the remaining undetermined fundamental aspects of the Standard Model in the
The KATRIN experiment, presently under construction in Karlsruhe, Germany, will improve on previous laboratory limits on the neutrino mass by a factor of ten. KATRIN will use a high-activity, gaseous T2 source and a very high-resolution spectrometer