ﻻ يوجد ملخص باللغة العربية
Theoretical studies have revealed that dust grains are usually moving fast through the turbulent interstellar gas, which could have significant effects upon interstellar chemistry by modifying grain accretion. This effect is investigated in this work on the basis of numerical gas-grain chemical modeling. Major features of the grain motion effect in the typical environment of dark clouds (DC) can be summarised as follows: 1) decrease of gas-phase (both neutral and ionic) abundances and increase of surface abundances by up to 2-3 orders of magnitude; 2) shifts of the existing chemical jumps to earlier evolution ages for gas-phase species and to later ages for surface species by factors of about ten; 3) a few exceptional cases in which some species turn out to be insensitive to this effect and some other species can show opposite behaviors too. These effects usually begin to emerge from a typical DC model age of about 10^5 yr. The grain motion in a typical cold neutral medium (CNM) can help overcome the Coulomb repulsive barrier to enable effective accretion of cations onto positively charged grains. As a result, the grain motion greatly enhances the abundances of some gas-phase and surface species by factors up to 2-6 or more orders of magnitude in the CNM model. The grain motion effect in a typical molecular cloud (MC) is intermediate between that of the DC and CNM models, but with weaker strength. The grain motion is found to be important to consider in chemical simulations of typical interstellar medium.
It has recently been shown that turbulence in the interstellar medium (ISM) can significantly accelerate the growth of dust grains by accretion of molecules, but the turbulent gas-density distribution also plays a crucial role in shaping the grain-si
The ULIRG Mrk 231 exhibits very strong water rotational lines between lambda = 200-670mu m, comparable to the strength of the CO rotational lines. High redshift quasars also show similar CO and H2O line properties, while starburst galaxies, such as M
Dust grains are aligned with the interstellar magnetic field and drift through the interstellar medium (ISM). Evolution of interstellar dust is driven by grain motion. In this paper, we study the effect of grain alignment with magnetic fields and gra
Networks of reactions on dust grain surfaces play a crucial role in the chemistry of interstellar clouds, leading to the formation of molecular hydrogen in diffuse clouds as well as various organic molecules in dense molecular clouds. Due to the sub-
Advanced telescopes, such as ALMA and JWST, are likely to show that the chemical universe may be even more complex than currently observed, requiring astrochemical modelers to improve their models to account for the impact of new data. However, essen