ﻻ يوجد ملخص باللغة العربية
Motivated by a recent experiment [Nadj-Perge et al., Science 346, 602 (2014)] providing evidence for Majorana zero modes in iron chains on the superconducting Pb surface, in the present work, we theoretically propose an all-optical scheme to detect Majorana fermions, which is very different from the current tunneling measurement based on electrical means. The optical detection proposal consists of a quantum dot embedded in a nanomechanical resonator with optical pump-probe technology. With the optical means, the signal in the coherent optical spectrum presents a distinct signature for the existence of Majorana fermions in the end of iron chains. Further, the vibration of the nanomechanical resonator behaving as a phonon cavity will enhance the exciton resonance spectrum, which makes the Majorana fermions more sensitive to be detectable. This optical scheme affords a potential supplement for detection of Majorana fermions and supports to use Majorana fermions in Fe chains as qubits for potential applications in quantum computing devices.
We propose a current correlation spectrum approach to probe the quantum behaviors of a nanome-chanical resonator (NAMR). The NAMR is coupled to a double quantum dot (DQD), which acts as a quantum transducer and is further coupled to a quantum-point c
We propose an approach for achieving ground-state cooling of a nanomechanical resonator (NAMR) capacitively coupled to a triple quantum dot (TQD). This TQD is an electronic analog of a three-level atom in $Lambda$ configuration which allows an electr
We demonstrate a method of tuning a semiconductor quantum dot (QD) onto resonance with a cavity mode all-optically. We use a system comprised of two evanescently coupled cavities containing a single QD. One resonance of the coupled cavity system is u
We show two effects as a result of considering the second-order correction to the spectrum of a nanomechanical resonator electrostatically coupled to a Cooper-pair box. The spectrum of the Cooper-pair box is modified in a way which depends on the Foc
We propose a three-terminal structure to probe robust signatures of Majorana zero modes consisting of a quantum dot coupled to the normal metal, s-wave superconducting and Majorana Y-junction leads. The zero-bias differential conductance at zero temp