ﻻ يوجد ملخص باللغة العربية
We investigate the formation of hydrogen cyanide (HCN) in the inner circumstellar envelopes of thermally pulsing asymptotic giant branch (TP-AGB) stars. A dynamic model for periodically shocked atmospheres, which includes an extended chemo-kinetic network, is for the first time coupled to detailed evolutionary tracks for the TP-AGB phase computed with the COLIBRI code. We carried out a calibration of the main shock parameters (the shock formation radius and the effective adiabatic index) using the circumstellar HCN abundances recently measured for a populous sample of pulsating TP-AGB stars. Our models recover the range of the observed HCN concentrations as a function of the mass-loss rates, and successfully reproduce the systematic increase of HCN moving along the M-S-C chemical sequence of TP-AGB stars, that traces the increase of the surface C/O ratio. The chemical calibration brings along two important implications: i) the first shock should emerge very close to the photosphere, and ii) shocks are expected to have a dominant isothermal character in the denser region close to the star (within ~ 3-4 R), implying that radiative processes should be quite efficient. Our analysis also suggests that the HCN concentrations in the inner circumstellar envelopes are critically affected by the H-H2 chemistry during the post-shock relaxation stages.
We present the dust ejecta of the new stellar models for the Thermally Pulsing Asymptotic Giant Branch (TP-AGB) phase computed with the COLIBRI code. We use a formalism of dust growth coupled with a stationary wind for both M and C-stars. In the orig
We extend the formalism presented in our recent calculations of dust ejecta from the Thermally Pulsing Asymptotic Giant Branch (TP-AGB) phase, to the case of super-solar metallicity stars. The TP-AGB evolutionary models are computed with the COLIBRI
Thermally-Pulsing Asymptotic Giant Branch (TP-AGB) stars are relatively short lived (less than a few Myr), yet their cool effective temperatures, high luminosities, efficient mass-loss and dust production can dramatically effect the chemical enrichme
We discuss the dust chemistry and growth in the circumstellar envelopes (CSEs) of Thermally Pulsing Asymptotic Giant Branch (TP-AGB) star models computed with the COLIBRI code, at varying initial mass and metallicity (Z=0.001, 0.008, 0.02, 0.04, 0.06
The thermally-pulsing asymptotic giant branch (TP-AGB) experienced by low- and intermediate-mass stars is one of the most uncertain phases of stellar evolution and the models need to be calibrated with the aid of observations. To this purpose, we cou