ﻻ يوجد ملخص باللغة العربية
Topological insulators provide a new platform for spintronics due to the spin texture of the surface states that are topologically robust against elastic backscattering. Here, we report on an investigation of the measured voltage obtained from efforts to electrically probe spin-momentum locking in the topological insulator Bi$_2$Se$_3$ using ferromagnetic contacts. Upon inverting the magnetization of the ferromagnetic contacts, we find a reversal of the measured voltage. Extensive analysis of the bias and temperature dependence of this voltage was done, considering the orientation of the magnetization relative to the current. Our findings indicate that the measured voltage can arise due to fringe-field-induced Hall voltages, different from current-induced spin polarization of the surface state charge carriers, as reported recently. Understanding the nontrivial origin of the measured voltage is important for realizing spintronic devices with topological insulators.
The influence of individual impurities of Fe on the electronic properties of topological insulator Bi$_2$Se$_3$ is studied by Scanning Tunneling Microscopy. The microscope tip is used in order to remotely charge/discharge Fe impurities. The charging
Nuclear magnetic resonance (NMR) and transport measurements have been performed at high magnetic fields and low temperatures in a series of $n$-type Bi$_{2}$Se$_{3}$ crystals. In low density samples, a complete spin polarization of the electronic sys
Using circularly polarized light is an alternative to electronic ways for spin injection into materials. Spins are injected at a point of the light illumination, and then diffuse and spread radially due to the in-plane gradient of the spin density. T
We study the fate of the surface states of Bi$_2$Se$_3$ under disorder with strength larger than the bulk gap, caused by neon sputtering and nonmagnetic adsorbates. We find that neon sputtering introduces strong but dilute defects, which can be model
The protected electron states at the boundaries or on the surfaces of topological insulators (TIs) have been the subject of intense theoretical and experimental investigations. Such states are enforced by very strong spin-orbit interaction in solids