ترغب بنشر مسار تعليمي؟ اضغط هنا

The Galactic One-Way Shapiro Delay to PSR B1937+21

126   0   0.0 ( 0 )
 نشر من قبل Shantanu Desai
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The time delay experienced by a light ray as it passes through a changing gravitational potential by a non-zero mass distribution along the line of sight is usually referred to as Shapiro delay. Shapiro delay has been extensively measured in the Solar system and in binary pulsars, enabling stringent tests of general relativity as well as measurement of neutron star masses . However, Shapiro delay is ubiquitous and experienced by all astrophysical messengers on their way from the source to the Earth. We calculate the one-way static Shapiro delay for the first discovered millisecond pulsar PSR~B1937+21, by including the contributions from both the dark matter and baryonic matter between this pulsar and the Earth. We find a value of approximately 5 days (of which 4.74 days is from the dark matter and 0.22 days from the baryonic matter). We also calculate the modulation of Shapiro delay from the motion of a single dark matter halo, and also evaluate the cumulative effects of the motion of matter distribution on the change in pulsars period and its derivative. The time-dependent effects are too small to be detected with the current timing noise observed for this pulsar. Finally, we would like to emphasize that although the one-way Shapiro delay is mostly of academic interest for electromagnetic astronomy, its ubiquity should not be forgotten in the era of multi-messenger astronomy.



قيم البحث

اقرأ أيضاً

125 - L. Nicastro 2003
We present the results of a BeppoSAX observation of the fastest rotating pulsar known: PSR B1937+21. The ~200 ks observation (78.5 ks MECS/34 ks LECS on-source time) allowed us to investigate with high statistical significance both the spectral prope rties and the pulse profile shape. The pulse profile is clearly double peaked at energies > ~4 keV. Peak widths are compatible with the instrumental time resolution and the second pulse lags the main pulse 0.52 in phase, like is the case in the radio. In the 1.3-4 keV band we detect a ~45% DC component; conversely the 4-10 keV pulsed fraction is consistent with 100%. The on-pulse spectrum is fitted with an absorbed power-law of spectral index ~1.2, harder than that of the total flux which is ~1.9. The total unabsorbed (2-10 keV) flux is F_{2-10} = 4.1 10^-13 cgs, implying a luminosity of L_X = 5.0 10^31 Theta (d/3.6 kpc)^2 erg s^-1 and a X-ray efficiency of eta = 4.5 10^-5 Theta, where Theta is the solid angle spanned by the emission beam. These results are in agreement with those obtained by ASCA and a more recent Rossi-XTE observation. The hydrogen column density N_H ~2 10^22 cm^-2 is ~10 times higher than expected from the radio dispersion measure and average Galactic density of e-. Though it is compatible (within 2sigma) with the Galactic (HI derived) value of ~1 10^22 cm^-2, inspection of dust extinction maps reveal that the pulsar falls in a highly absorbed region. In addition, 1.4 GHz radio map shows that the nearby (likely unrelated) HII source 4C21.53W is part of a circular emission region ~4 across.
68 - O. Loehmer 2004
We present the results of precision timing observations of the binary millisecond pulsar PSR J1640+2224. Combining the pulse arrival time measurements made with the Effelsberg 100-m radio telescope and the Arecibo 305-m radio telescope, we have exten ded the existing timing model of the pulsar to search for a presence of the effect of a general-relativistic Shapiro delay in the data. At the currently attainable precision level, the observed amplitude of the effect constrains the companion mass to $m_2=0.15^{+0.08}_{-0.05} M_sun$, which is consistent with the estimates obtained from optical observations of the white dwarf companion and with the mass range predicted by theories of binary evolution. The measured shape of the Shapiro delay curve restricts the range of possible orbital inclinations of the PSR J1640+2224 system to $78^{circ}le ile 88^{circ}$. The pulsar offers excellent prospects to significantly tighten these constraints in the near future.
Cyclic spectroscopy is a signal processing technique that was originally developed for engineering applications and has recently been introduced into the field of pulsar astronomy. It is a powerful technique with many attractive features, not least o f which is the explicit rendering of information about the relative phases in any filtering imposed on the signal, thus making holography a more straightforward proposition. Here we present methods for determining optimum estimates of both the filter itself and the statistics of the unfiltered signal, starting from a measured cyclic spectrum. In the context of radio pulsars these quantities tell us the impulse response of the interstellar medium and the intrinsic pulse profile. We demonstrate our techniques by application to 428 MHz Arecibo data on the millisecond pulsar B1937+21, obtaining the pulse profile free from the effects of interstellar scattering. As expected, the intrinsic profile exhibits main- and inter-pulse components that are narrower than they appear in the scattered profile; it also manifests some weak, but sharp features that are revealed for the first time at low frequency. We determine the structure of the received electric-field envelope as a function of delay and Doppler-shift. Our delay-Doppler image has a high dynamic-range and displays some pronounced, low-level power concentrations at large delays. These concentrations imply strong clumpiness in the ionized interstellar medium, on AU size-scales, which must adversely affect the timing of B1937+21.
We calculate the total galactic Shapiro delay to the Crab pulsar by including the contributions from the dark matter as well as baryonic matter along the line of sight. The total delay due to dark matter potential is about 3.4 days. For baryonic matt er, we included the contributions from both the bulge and the disk, which are approximately 0.12 and 0.32 days respectively. The total delay from all the matter distribution is therefore 3.84 days. We also calculate the limit on violations of Einsteins equivalence principle by using observations of nano-shot giant pulses from the Crab pulsar with time-delay $<0.4$~ns as well as using time differences between radio and optical photons observed from this pulsar. Using the former, we obtain a limit on violation of Einsteins equivalence principle in terms of the PPN parameter $Delta gamma < 2.41times 10^{-15}$. From the time-difference between simultaneous optical and radio observations, we get $Delta gamma < 1.54times 10^{-9}$. We also point out differences in our calculation of Shapiro delay and that from two recent papers (arXiv:1612.00717 and arXiv:1608.07657), which used the same observations to obtain a corresponding limit on $Delta gamma$.
PSR J1910-5959A is a binary pulsar with a helium white dwarf companion located about 6 arcmin from the center of the globular cluster NGC6752. Based on 12 years of observations at the Parkes radio telescope, the relativistic Shapiro delay has been de tected in this system. We obtain a companion mass Mc = 0.180+/-0.018Msun (1sigma) implying that the pulsar mass lies in the range 1.1Msun <= Mp <= 1.5Msun. We compare our results with previous optical determinations of the companion mass, and examine prospects for using this new measurement for calibrating the mass-radius relation for helium white dwarfs and for investigating their evolution in a pulsar binary system. Finally we examine the set of binary systems hosting a millisecond pulsar and a low mass helium white dwarf for which the mass of both stars has been measured. We confirm that the correlation between the companion mass and the orbital period predicted by Tauris & Savonije reproduces the observed values but find that the predicted Mp - Pb correlation over-estimates the neutron star mass by about 0.5Msun in the orbital period range covered by the observations. Moreover, a few systems do not obey the observed Mp - Pb correlation. We discuss these results in the framework of the mechanisms that inhibit the accretion of matter by a neutron star during its evolution in a low-mass X-ray binary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا