ﻻ يوجد ملخص باللغة العربية
We obtain a new determination of the metallicity distribution function (MDF) of stars within $sim5$-$10$ kpc of the Sun, based on recently improved co-adds of $ugriz$ photometry for Stripe 82 from the Sloan Digital Sky Survey. Our new estimate uses the methodology developed previously by An et al. to study in situ halo stars, but is based on a factor of two larger sample than available before, with much-improved photometric errors and zero-points. The newly obtained MDF can be divided into multiple populations of halo stars, with peak metallicities at [Fe/H] $approx -1.4$ and $-1.9$, which we associate with the inner-halo and outer-halo populations of the Milky Way, respectively. We find that the kinematics of these stars (based on proper-motion measurements at high Galactic latitude) supports the proposed dichotomy of the halo, as stars with retrograde motions in the rest frame of the Galaxy are generally more metal-poor than stars with prograde motions, consistent with previous claims. In addition, we generate mock catalogs of stars from a simulated Milk Way halo system, and demonstrate for the first time that the chemically- and kinematically-distinct properties of the inner- and outer-halo populations are qualitatively in agreement with our observations. The decomposition of the observed MDF and our comparison with the mock catalog results suggest that the outer-halo population contributes on the order of $sim35%$-$55%$ of halo stars in the local volume.
(Abridged) Carbon-enhanced metal-poor (CEMP) stars in the halo components of the Milky Way are explored, based on accurate determinations of the carbon-to-iron ([C/Fe]) abundance ratios and kinematic quantities for over 30000 calibration stars from t
We present chemical abundances of 57 metal-poor stars that are likely constituents of the outer stellar halo in the Milky Way. Almost all of the sample stars have an orbit reaching a maximum vertical distance (Z_max) of >5 kpc above and below the Gal
We analyze the observed spatial, chemical and dynamical distributions of local metal-poor stars, based on photometrically derived metallicity and distance estimates along with proper motions from the Gaia mission. Along the Galactic prime meridian, w
We explore the vicinity of the Milky Way through the use of spectro-photometric data from the Sloan Digital Sky Survey and high-quality proper motions derived from multi-epoch positions extracted from the Guide Star Catalogue II database. In order to
We have obtained deep Hubble Space Telescope (HST) imaging of 19 dwarf galaxy candidates in the vicinity of M101. Advanced Camera for Surveys HST photometry for 2 of these objects showed resolved stellar populations and Tip of the Red Giant Branch de