ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental system design for the integration of trapped-ion and superconducting qubit systems

151   0   0.0 ( 0 )
 نشر من قبل Anton Grounds
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a design for the experimental integration of ion trapping and superconducting qubit systems as a step towards the realization of a quantum hybrid system. The scheme addresses two key difficulties in realizing such a system; a combined microfabricated ion trap and superconducting qubit architecture, and the experimental infrastructure to facilitate both technologies. Developing upon work by Kielpinski et al. [1] we describe the design, simulation and fabrication process for a microfabricated ion trap capable of coupling an ion to a superconducting microwave LC circuit with a coupling strength in the tens of kHz. We also describe existing difficulties in combining the experimental infrastructure of an ion trapping setup into a dilution fridge with superconducting qubits and present solutions that can be immediately implemented using current technology.



قيم البحث

اقرأ أيضاً

We present the design, fabrication, and experimental implementation of surface ion traps with Y-shaped junctions. The traps are designed to minimize the pseudopotential variations in the junction region at the symmetric intersection of three linear s egments. We experimentally demonstrate robust linear and junction shuttling with greater than one million round-trip shuttles without ion loss. By minimizing the direct line of sight between trapped ions and dielectric surfaces, negligible day-to-day and trap-to-trap variations are observed. In addition to high-fidelity single-ion shuttling, multiple-ion chains survive splitting, ion-position swapping, and recombining routines. The development of two-dimensional trapping structures is an important milestone for ion-trap quantum computing and quantum simulations.
141 - Roee Ozeri 2011
In this tutorial we review the basic building blocks of Quantum Information Processing with cold trapped atomic-ions. We mainly focus on methods to implement single-qubit rotations and two-qubit entangling gates, which form a universal set of quantum gates. Different ion qubit choices and their respective gate implementations are described.
$^{133}text{Ba}^+$ has been identified as an attractive ion for quantum information processing due to the unique combination of its spin-1/2 nucleus and visible wavelength electronic transitions. Using a microgram source of radioactive material, we t rap and laser-cool the synthetic $A$ = 133 radioisotope of barium II in a radio-frequency ion trap. Using the same, single trapped atom, we measure the isotope shifts and hyperfine structure of the $6^2 text{P}_{1/2}$ $leftrightarrow$ $6^2 text{S}_{1/2}$ and $6^2 text{P}_{1/2}$ $leftrightarrow$ $5^2 text{D}_{3/2}$ electronic transitions that are needed for laser cooling, state preparation, and state detection of the clock-state hyperfine and optical qubits. We also report the $6^2 text{P}_{1/2}$ $leftrightarrow$ $5^2 text{D}_{3/2}$ electronic transition isotope shift for the rare $A$ = 130 and 132 barium nuclides, completing the spectroscopic characterization necessary for laser cooling all long-lived barium II isotopes.
We report high-fidelity state readout of a trapped ion qubit using a trap-integrated photon detector. We determine the hyperfine qubit state of a single $^9$Be$^+$ ion held in a surface-electrode rf ion trap by counting state-dependent ion fluorescen ce photons with a superconducting nanowire single-photon detector (SNSPD) fabricated into the trap structure. The average readout fidelity is 0.9991(1), with a mean readout duration of 46 $mu$s, and is limited by the polarization impurity of the readout laser beam and by off-resonant optical pumping. Because there are no intervening optical elements between the ion and the detector, we can use the ion fluorescence as a self-calibrated photon source to determine the detector quantum efficiency and its dependence on photon incidence angle and polarization.
We demonstrate a coherence time of 2.1(1)~s for electron spin superposition states of a single trapped $^{40}$Ca$^+$ ion. The coherence time, measured with a spin-echo experiment, corresponds to residual rms magnetic field fluctuations $leq$~2.7$time s$10$^{-12}$~T. The suppression of decoherence induced by fluctuating magnetic fields is achieved by combining a two-layer $mu$-metal shield, which reduces external magnetic noise by 20 to 30~dB for frequencies of 50~Hz to 100~kHz, with Sm$_2$Co$_{17}$ permanent magnets for generating a quantizing magnetic field of 0.37~mT. Our results extend the coherence time of the simple-to-operate spin qubit to ultralong coherence times which so far have been observed only for magnetic insensitive transitions in atomic qubits with hyperfine structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا