ﻻ يوجد ملخص باللغة العربية
Community involvement and the preventive behavior of households are considered to be at the heart of vector-control strategies. In this work, we consider a simple theoretical model that enables us to take into account human behaviors that may interfere with vector control. The model reflects the trade-off between perceived costs and observed efficacy. Our theoretical results emphasize that households may reduce their protective behavior in response to mechanical elimination techniques piloted by a public agent, leading to an increase of the total number of mosquitoes in the surrounding environment and generating a barrier for vector-borne diseases control. Our study is sufficiently generic to be applied to different arboviral diseases. It also shows that vector-control models and strategies have to take into account human behaviors.
Controlling pest insects is a challenge of main importance to preserve crop production. In the context of Integrated Pest Management (IPM) programs, we develop a generic model to study the impact of mating disruption control using an artificial femal
Coronavirus disease 2019 (CoViD-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Among many symptoms, cough, fever and tiredness are the most common. People over 60 years old and with associated com
A multilayer network approach combines different network layers, which are connected by interlayer edges, to create a single mathematical object. These networks can contain a variety of information types and represent different aspects of a system. H
A stable population network is hard to interrupt without any ecological consequences. A communication blockage between patches may destabilize the populations in the ecological network. This work deals with the construction of a safe cut passing thro
In this paper we provide the derivation of a super compact pairwise model with only 4 equations in the context of describing susceptible-infected-susceptible (SIS) epidemic dynamics on heterogenous networks. The super compact model is based on a new