ترغب بنشر مسار تعليمي؟ اضغط هنا

Differential Emission Measure and Electron Distribution Function Reconstructed from RHESSI and SDO Observations

299   0   0.0 ( 0 )
 نشر من قبل Galina Motorina
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To solve a number of problems in solar physics related to mechanisms of energy release in solar corona parameters of hot coronal plasma are required, such as energy distribution, emission measure, differential emission measure, and their evolution with time. Of special interest is the distribution of solar plasma by energies, which can evolve from a nearly Maxwellian distribution to a distribution with a more complex structure during a solar flare. The exact form of this distribution for low-energy particles, which receive the bulk of flare energy, is still poorly known; therefore, detailed investigations are required. We present a developed method of simultaneous fitting of data from two spacecrafts Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), using a differential emission measure and a thin target model for the August 14, 2010 flare event.



قيم البحث

اقرأ أيضاً

Deriving a well-constrained differential emission measure (DEM) distribution for solar flares has historically been difficult, primarily because no single instrument is sensitive to the full range of coronal temperatures observed in flares, from $les ssim$2 to $gtrsim$50 MK. We present a new technique, combining extreme ultraviolet (EUV) spectra from the EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory with X-ray spectra from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), to derive, for the first time, a self-consistent, well-constrained DEM for jointly-observed solar flares. EVE is sensitive to ~2-25 MK thermal plasma emission, and RHESSI to $gtrsim$10 MK; together, the two instruments cover the full range of flare coronal plasma temperatures. We have validated the new technique on artificial test data, and apply it to two X-class flares from solar cycle 24 to determine the flare DEM and its temporal evolution; the constraints on the thermal emission derived from the EVE data also constrain the low-energy cutoff of the non-thermal electrons, a crucial parameter for flare energetics. The DEM analysis can also be used to predict the soft X-ray flux in the poorly-observed ~0.4-5 nm range, with important applications for geospace science.
158 - I. G. Hannah , E. P. Kontar 2012
We develop and apply an enhanced regularization algorithm, used in RHESSI X-ray spectral analysis, to constrain the ill-posed inverse problem that is determining the DEM from solar observations. We demonstrate this computationally fast technique appl ied to a range of DEM models simulating broadband imaging data from SDO/AIA and high resolution line spectra from Hinode/EIS, as well as actual active region observations with Hinode/EIS and XRT. As this regularization method naturally provides both vertical and horizontal (temperature resolution) error bars we are able to test the role of uncertainties in the data and response functions. The regularization method is able to successfully recover the DEM from simulated data of a variety of model DEMs (single Gaussian, multiple Gaussians and CHIANTI DEM models). It is able to do this, at best, to over four orders of magnitude in DEM space but typically over two orders of magnitude from peak emission. The combination of horizontal and vertical error bars and the regularized solution matrix allows us to easily determine the accuracy and robustness of the regularized DEM. We find that the typical range for the horizontal errors is $Delta$log$Tapprox 0.1 -0.5$ and this is dependent on the observed signal to noise, uncertainty in the response functions as well as the source model and temperature. With Hinode/EIS an uncertainty of 20% greatly broadens the regularized DEMs for both Gaussian and CHIANTI models although information about the underlying DEMs is still recoverable. When applied to real active region observations with Hinode/EIS and XRT the regularization method is able to recover a DEM similar to that found via a MCMC method but in considerably less computational time.
We analyze a pair of Suzaku shadowing observations in order to determine the X-ray spectrum of the Galaxys gaseous halo. We simultaneously fit the spectra with models having halo, local, and extragalactic components. The intrinsic intensities of the halo OVII triplet and OVIII Lyman alpha emission lines are 9.98^{+1.10}_{-1.99} LU (line unit; photons cm^-2 s^-1 Sr^-1) and 2.66^{+0.37}_{-0.30} LU, respectively. Meanwhile, FUSE OVI observations for the same directions and SPEAR CIV observations for a nearby direction indicate the existence of hot halo gas at temperatures of ~10^{5.0} K to ~10^{6.0} K. This collection of data implies that the hot gas in the Galactic halo is not isothermal, but its temperature spans a relatively wide range from ~10^{5.0} K to ~10^{7.0} K. We therefore construct a differential emission measure (DEM) model for the halos hot gas, consisting of two components. In each, dEM/dlog T is assumed to follow a power-law function of the temperature and the gas is assumed to be in collisional ionizational equilibrium. The low-temperature component (LTC) of the broken power-law DEM model covers the temperature range of 10^{4.80}-10^{6.02} K with a slope of 0.30 and the high-temperature component (HTC) covers the temperature range of 10^{6.02}-10^{7.02} K with a slope of -2.21. We find that a simple model in which hot gas accretes onto the Galactic halo and cools radiatively cannot explain both the observed UV and X-ray portions of our broken power-law model. It can, however, explain the intensity in the Suzaku bandpass if the mass infall rate is 1.35*10^{-3} Msun yr^-1 kpc^-2. The UV and X-ray intensities and our broken power-law model can be well explained by hot gas produced by supernova explosions or by supernova remnants supplemented by a smooth source of X-rays.
An X1.6 flare occurred in AR 12192 on 2014 October 22 at 14:02 UT and was observed by Hinode, IRIS, SDO, and RHESSI. We analyze a bright kernel which produces a white light (WL) flare with continuum enhancement and a hard X-ray (HXR) peak. Taking adv antage of the spectroscopic observations of IRIS and Hinode/EIS, we measure the temporal variation of the plasma properties in the bright kernel in the chromosphere and corona. We found that explosive evaporation was observed when the WL emission occurred, even though the intensity enhancement in hotter lines is quite weak. The temporal correlation of the WL emission, HXR peak, and evaporation flows indicate that the WL emission was produced by accelerated electrons. To understand the white light emission process, we calculated the energy flux deposited by non- thermal electrons (observed by RHESSI) and compared it to the dissipated energy estimated from a chromospheric line (Mg II triplet) observed by IRIS. The deposited energy flux from the non-thermal electrons is about 3 ~ 7.7 X 10^(10) erg cm^(-2) s^(-1) for a given low energy cut-off of 30 ~ 40 keV, assuming the thick target model. The energy flux estimated from the temperature changes in the chromosphere measured using the Mg II subordinate line is about 4.6 - 6.7 X 10(9) erg cm^(-2) s^(-1): ~6-22% of the deposited energy. This comparison of estimated energy fluxes implies that the continuum enhancement was directly produced by the non-thermal electrons.
We investigate triggering, activation, and ejection of a solar eruptive prominence that occurred in a multi-polar flux system of active region NOAA 11548 on 2012 August 18 by analyzing data from AIA on board SDO, RHESSI, and EUVI/SECCHI on board STER EO. Prior to the prominence activation, we observed striking coronal activities in the form of a blowout jet which is associated with rapid eruption of a cool flux rope. Further, the jet-associated flux rope eruption underwent splitting and rotation during its outward expansion. These coronal activities are followed by the prominence activation during which it slowly rises with a speed of ~12 km/s while the region below the prominence emits gradually varying EUV and thermal X-ray emissions. From these observations, we propose that the prominence eruption is a complex, multi-step phenomenon in which a combination of internal (tether-cutting reconnection) and external (i.e., pre-eruption coronal activities) processes are involved. The prominence underwent catastrophic loss of equilibrium with the onset of the impulsive phase of an M1.8 flare suggesting large-scale energy release by coronal magnetic reconnection. We obtained signatures of particle acceleration in the form of power law spectra with hard electron spectral index (delta ~ 3) and strong HXR footpoint sources. During the impulsive phase, a hot EUV plasmoid was observed below the apex of the erupting prominence that ejected in the direction of the prominence with a speed of ~177 km/s. The temporal, spatial and kinematic correlations between the erupting prominence and the plasmoid imply that the magnetic reconnection supported the fast ejection of prominence in the lower corona.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا