ترغب بنشر مسار تعليمي؟ اضغط هنا

Using persistent homology to reveal hidden information in neural data

66   0   0.0 ( 0 )
 نشر من قبل Gard Spreemann
 تاريخ النشر 2015
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a method, based on persistent homology, to uncover topological properties of a priori unknown covariates of neuron activity. Our input data consist of spike train measurements of a set of neurons of interest, a candidate list of the known stimuli that govern neuron activity, and the corresponding state of the animal throughout the experiment performed. Using a generalized linear model for neuron activity and simple assumptions on the effects of the external stimuli, we infer away any contribution to the observed spike trains by the candidate stimuli. Persistent homology then reveals useful information about any further, unknown, covariates.



قيم البحث

اقرأ أيضاً

Primary visual cortex (V1) is the first stage of cortical image processing, and a major effort in systems neuroscience is devoted to understanding how it encodes information about visual stimuli. Within V1, many neurons respond selectively to edges o f a given preferred orientation: these are known as simple or complex cells, and they are well-studied. Other neurons respond to localized center-surround image features. Still others respond selectively to certain image stimuli, but the specific features that excite them are unknown. Moreover, even for the simple and complex cells-- the best-understood V1 neurons-- it is challenging to predict how they will respond to natural image stimuli. Thus, there are important gaps in our understanding of how V1 encodes images. To fill this gap, we train deep convolutional neural networks to predict the firing rates of V1 neurons in response to natural image stimuli, and find that 15% of these neurons are within 10% of their theoretical limit of predictability. For these well predicted neurons, we invert the predictor network to identify the image features (receptive fields) that cause the V1 neurons to spike. In addition to those with previously-characterized receptive fields (Gabor wavelet and center-surround), we identify neurons that respond predictably to higher-level textural image features that are not localized to any particular region of the image.
We develop a method for analyzing spatiotemporal anomalies in geospatial data using topological data analysis (TDA). To do this, we use persistent homology (PH), a tool from TDA that allows one to algorithmically detect geometric voids in a data set and quantify the persistence of these voids. We construct an efficient filtered simplicial complex (FSC) such that the voids in our FSC are in one-to-one correspondence with the anomalies. Our approach goes beyond simply identifying anomalies; it also encodes information about the relationships between anomalies. We use vineyards, which one can interpret as time-varying persistence diagrams (an approach for visualizing PH), to track how the locations of the anomalies change over time. We conduct two case studies using spatially heterogeneous COVID-19 data. First, we examine vaccination rates in New York City by zip code. Second, we study a year-long data set of COVID-19 case rates in neighborhoods in the city of Los Angeles.
We introduce Cubical Ripser for computing persistent homology of image and volume data (more precisely, weighted cubical complexes). To our best knowledge, Cubical Ripser is currently the fastest and the most memory-efficient program for computing pe rsistent homology of weighted cubical complexes. We demonstrate our software with an example of image analysis in which persistent homology and convolutional neural networks are successfully combined. Our open-source implementation is available online.
Comparison between multidimensional persistent Betti numbers is often based on the multidimensional matching distance. While this metric is rather simple to define and compute by considering a suitable family of filtering functions associated with li nes having a positive slope, it has two main drawbacks. First, it forgets the natural link between the homological properties of filtrations associated with lines that are close to each other. As a consequence, part of the interesting homological information is lost. Second, its intrinsically discontinuous definition makes it difficult to study its properties. In this paper we introduce a new matching distance for 2D persistent Betti numbers, called coherent matching distance and based on matchings that change coherently with the filtrations we take into account. Its definition is not trivial, as it must face the presence of monodromy in multidimensional persistence, i.e. the fact that different paths in the space parameterizing the above filtrations can induce different matchings between the associated persistent diagrams. In our paper we prove that the coherent 2D matching distance is well-defined and stable.
Persistent Homology is a fairly new branch of Computational Topology which combines geometry and topology for an effective shape description of use in Pattern Recognition. In particular it registers through Betti Numbers the presence of holes and the ir persistence while a parameter (filtering function) is varied. In this paper, some recent developments in this field are integrated in a k-Nearest Neighbor search algorithm suited for an automatic retrieval of melanocytic lesions. Since long, dermatologists use five morphological parameters (A = Asymmetry, B = Boundary, C = Color, D = Diameter, E = Elevation or Evolution) for assessing the malignancy of a lesion. The algorithm is based on a qualitative assessment of the segmented images by computing both 1 and 2-dimensional Persistent Betti Numbers functions related to the ABCDE parameters and to the internal texture of the lesion. The results of a feasibility test on a set of 107 melanocytic lesions are reported in the section dedicated to the numerical experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا