ﻻ يوجد ملخص باللغة العربية
A reliable determination of the isospin breaking double quark mass ratio from precise experimental data on $etato 3pi$ decays should be based on the chiral expansion of the amplitude supplemented with a Khuri-Treiman type dispersive treatment of the final-state interactions. We discuss an extension of this formalism which allows to estimate the effects of the $a_0(980)$ and $f_0(980)$ resonances and their mixing on the $etato 3pi$ amplitudes. Matrix generalisations of the equations describing elastic $pipi$ rescattering with $I=0,,2$ are introduced which accomodate both $pipi/Kbar{K}$ and $etapi/Kbar{K}$ coupled-channel rescattering. Isospin violation induced by the physical $K^+-K^0$ mass difference and by direct $u-d$ mass difference effects are both accounted for in the dispersive integrals. Numerical solutions are constructed which illustrate how the large resonance effects at 1 GeV propagate down to low energies. They remain small in the physical region of the decay, due to the matching constraints with the NLO chiral amplitude, but they are not negligible and go in the sense of further improving the agreement with experiment for the Dalitz plot parameters.
Recent experiments on $etato 3pi$ decays have provided an extremely precise knowledge of the amplitudes across the Dalitz region which represent stringent constraints on theoretical descriptions. We reconsider an approach in which the low-energy chir
The Khuri-Treiman formalism models the partial-wave expansion of a scattering amplitude as a sum of three individual truncated series, capturing the low-energy dynamics of the direct and cross channels. We cast this formalism into dispersive equation
A dispersive analysis of $etato 3pi$ decays has been performed in the past by many authors. The numerical analysis of the pertinent integral equations is hampered by two technical difficulties: i) The angular averages of the amplitudes need to be per
The $a_0^0(980)-f_0(980)$ mixing is one of the most potential tools to learn about the nature of $a_0^0(980)$ and $f_0(980)$. Using the $f_0(980)$-$a_0^0(980)$ mixing intensity $xi_{af}$ measured recently at BESIII, we calculate the the branching rat
We make a theoretical study of the $eta(1405) to pi^{0} f_0(980)$ and $eta(1405) to pi^{0} a_0(980)$ reactions with an aim to determine the isospin violation and the mixing of the $f_0(980)$ and $a_0(980)$ resonances. We make use of the chiral unitar