ﻻ يوجد ملخص باللغة العربية
We show that particle production by gravitational field, especially the Hawking effect, may be treated as some quantum inertial effect, with the energy of Hawking radiation as some vacuum energy shift. This quantum inertial effect is mainly resulted from some intrinsical energy fluctuation $hbarkappa/c$ for a black hole. In particular, there is an extreme case in which $hbarkappa/c$ is the Planck energy, giving a Planck black hole whose event horizons diameter is one Planck length. Moreover, we also provide a possibility to obtain some positive cosmological constant for an expanding universe, which is induced from the vacuum energy shift caused by quantum inertial effect.
In the framework of a bimetric model, we discuss a relation between the (modified) Friedmann equations and a mechanical system similar to the quantum Hall effect problem. Firstly, we show how these modified Friedmann equations are mapped to an anisot
The role of chirality is discussed in unifying the anomaly and the tunneling formalisms for deriving the Hawking effect. Using the chirality condition and starting from the familiar form of the trace anomaly, the chiral (gravitational) anomaly, manif
Motivated by recent experimental progress to manipulate the refractive index of dielectric materials by strong laser beams, we study some aspects of the quantum radiation created by such refractive index perturbations.
We propose that Hawking radiation-like phenomena may be observed in systems that show butterfly effects. Suppose that a classical dynamical system has a Lyapunov exponent $lambda_L$, and is deterministic and non-thermal ($T=0$). We argue that, if we
We discuss Hawking radiation from a five-dimensional squashed Kaluza-Klein black hole on the basis of the tunneling mechanism. A simple manner, which was recently suggested by Umetsu, is possible to extend the original derivation by Parikh and Wilcze