ترغب بنشر مسار تعليمي؟ اضغط هنا

Safety-Constrained Reinforcement Learning for MDPs

57   0   0.0 ( 0 )
 نشر من قبل Nils Jansen
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider controller synthesis for stochastic and partially unknown environments in which safety is essential. Specifically, we abstract the problem as a Markov decision process in which the expected performance is measured using a cost function that is unknown prior to run-time exploration of the state space. Standard learning approaches synthesize cost-optimal strategies without guaranteeing safety properties. To remedy this, we first compute safe, permissive strategies. Then, exploration is constrained to these strategies and thereby meets the imposed safety requirements. Exploiting an iterative learning procedure, the resulting policy is safety-constrained and optimal. We show correctness and completeness of the method and discuss the use of several heuristics to increase its scalability. Finally, we demonstrate the applicability by means of a prototype implementation.



قيم البحث

اقرأ أيضاً

We study constrained reinforcement learning (CRL) from a novel perspective by setting constraints directly on state density functions, rather than the value functions considered by previous works. State density has a clear physical and mathematical i nterpretation, and is able to express a wide variety of constraints such as resource limits and safety requirements. Density constraints can also avoid the time-consuming process of designing and tuning cost functions required by value function-based constraints to encode system specifications. We leverage the duality between density functions and Q functions to develop an effective algorithm to solve the density constrained RL problem optimally and the constrains are guaranteed to be satisfied. We prove that the proposed algorithm converges to a near-optimal solution with a bounded error even when the policy update is imperfect. We use a set of comprehensive experiments to demonstrate the advantages of our approach over state-of-the-art CRL methods, with a wide range of density constrained tasks as well as standard CRL benchmarks such as Safety-Gym.
The safety constraints commonly used by existing safe reinforcement learning (RL) methods are defined only on expectation of initial states, but allow each certain state to be unsafe, which is unsatisfying for real-world safety-critical tasks. In thi s paper, we introduce the feasible actor-critic (FAC) algorithm, which is the first model-free constrained RL method that considers statewise safety, e.g, safety for each initial state. We claim that some states are inherently unsafe no matter what policy we choose, while for other states there exist policies ensuring safety, where we say such states and policies are feasible. By constructing a statewise Lagrange function available on RL sampling and adopting an additional neural network to approximate the statewise Lagrange multiplier, we manage to obtain the optimal feasible policy which ensures safety for each feasible state and the safest possible policy for infeasible states. Furthermore, the trained multiplier net can indicate whether a given state is feasible or not through the statewise complementary slackness condition. We provide theoretical guarantees that FAC outperforms previous expectation-based constrained RL methods in terms of both constraint satisfaction and reward optimization. Experimental results on both robot locomotive tasks and safe exploration tasks verify the safety enhancement and feasibility interpretation of the proposed method.
84 - Qi Yang , Peng Yang , Ke Tang 2021
The past decade has seen the rapid development of Reinforcement Learning, which acquires impressive performance with numerous training resources. However, one of the greatest challenges in RL is generalization efficiency (i.e., generalization perform ance in a unit time). This paper proposes a framework of Active Reinforcement Learning (ARL) over MDPs to improve generalization efficiency in a limited resource by instance selection. Given a number of instances, the algorithm chooses out valuable instances as training sets while training the policy, thereby costing fewer resources. Unlike existing approaches, we attempt to actively select and use training data rather than train on all the given data, thereby costing fewer resources. Furthermore, we introduce a general instance evaluation metrics and selection mechanism into the framework. Experiments results reveal that the proposed framework with Proximal Policy Optimization as policy optimizer can effectively improve generalization efficiency than unselect-ed and unbiased selected methods.
We develop a control algorithm that ensures the safety, in terms of confinement in a set, of a system with unknown, 2nd-order nonlinear dynamics. The algorithm establishes novel connections between data-driven and robust, nonlinear control. It is bas ed on data obtained online from the current trajectory and the concept of reciprocal barriers. More specifically, it first uses the obtained data to calculate set-valued functions that over-approximate the unknown dynamic terms. For the second step of the algorithm, we design a robust control scheme that uses these functions as well as reciprocal barriers to render the system forward invariant with respect to the safe set. In addition, we provide an extension of the algorithm that tackles issues of controllability loss incurred by the nullspace of the control-direction matrix. The algorithm removes a series of standard, limiting assumptions considered in the related literature since it does not require global boundedness, growth conditions, or a priori approximations of the unknown dynamics terms.
We study the reinforcement learning problem for discounted Markov Decision Processes (MDPs) under the tabular setting. We propose a model-based algorithm named UCBVI-$gamma$, which is based on the emph{optimism in the face of uncertainty principle} a nd the Bernstein-type bonus. We show that UCBVI-$gamma$ achieves an $tilde{O}big({sqrt{SAT}}/{(1-gamma)^{1.5}}big)$ regret, where $S$ is the number of states, $A$ is the number of actions, $gamma$ is the discount factor and $T$ is the number of steps. In addition, we construct a class of hard MDPs and show that for any algorithm, the expected regret is at least $tilde{Omega}big({sqrt{SAT}}/{(1-gamma)^{1.5}}big)$. Our upper bound matches the minimax lower bound up to logarithmic factors, which suggests that UCBVI-$gamma$ is nearly minimax optimal for discounted MDPs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا