ﻻ يوجد ملخص باللغة العربية
We review a new theory of viscoelasticity of a glass-forming viscous liquid near and below the glass transition. In our model we assume that each point in the material has a specific viscosity, which varies randomly in space according to a fluctuating activation free energy. We include a Maxwellian elastic term and assume that the corresponding shear modulus fluctuates as well with the same distribution as that of the activation barriers. The model is solved in coherent-potential approximation (CPA), for which a derivation is given. The theory predicts an Arrhenius-type temperature dependence of the viscosity in the vanishing-frequency limit, independent of the distribution of the activation barriers. The theory implies that this activation energy is generally different from that of a diffusing particle with the same barrier-height distribution. If the distribution of activation barriers is assumed to have Gaussian form, the finite-frequency version of the theory describes well the typical low-temperature alpha relaxation peak of glasses. Beta relaxation can be included by adding another Gaussian with center at much lower energies than that responsible for the alpha relaxation. At high frequencies our theory reduces to the description of an elastic medium with spatially fluctuating elastic moduli (heterogeneous elasticity theory), which explains the occurrence of the boson-peak-related vibrational anomalies of glasses.
In this letter we report {it in situ} small--angle neutron scattering results on the high--density (HDA) and low-density amorphous (LDA) ice structures and on intermediate structures as found during the temperature induced transformation of HDA into
The present work deals with the behavior of fiber bundle model under heterogeneous loading condition. The model is explored both in the mean-field limit as well as with local stress concentration. In the mean field limit, the failure abruptness decre
Spatial heterogeneity in the elastic properties of soft random solids is examined via vulcanization theory. The spatial heterogeneity in the emph{structure} of soft random solids is a result of the fluctuations locked-in at their synthesis, which als
We investigate the origin of the breakdown of the Stokes-Einstein relation (SER) between diffusivity and viscosity in undercooled melts. A binary Lennard-Jones system, as a model for a metallic melt, is studied by molecular dynamics. A weak breakdown
The recent theoretical treatment of irreversible jumps between inherent states with a constant density in shear space is extended to a full theory, attributing the shear relaxation to structural Eshelby rearrangements involving the creation and annih