ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct evidence for minority spin gap in the Co2MnSi Heusler alloy

66   0   0.0 ( 0 )
 نشر من قبل Stephane Andrieu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Stephane Andrieu




اسأل ChatGPT حول البحث

Half Metal Magnets are of great interest in the field of spintronics because of their potential full spin-polarization at the Fermi level and low magnetization damping. The high Curie temperature and predicted 0.7eV minority spin gap make the Heusler alloy Co2MnSi very promising for applications.We investigated the half-metallic magnetic character of this alloy using spin-resolved photoemission, ab initio calculation and ferromagnetic resonance. At the surface of Co2MnSi, a gap in the minority spin channel is observed, leading to 100% spin polarization. However, this gap is 0.3 eV below the Fermi level and a minority spin state is observed at the Fermi level. We show that a minority spin gap at the Fermi energy can nevertheless be recovered either by changing the stoichiometry of the alloy or by covering the surface by Mn, MnSi or MgO. This results in extremely small damping coefficients reaching values as low as 7x 10-4.



قيم البحث

اقرأ أيضاً

We report the current-perpendicular-to-plane giant magnetoresistance of a spin valve with Co2MnSi (CMS) Heusler alloy ferromagnetic electrodes. A multilayer stack of Cr/Ag/Cr/CMS/Cu/CMS/Fe25Co75/Ir28Mn72/Ru was deposited on a MgO (001) single crystal substrate. The bottom CMS layer was epitaxially grown on the Cr/Ag/Cr buffer layers and was ordered to the L21 structure after annealing at 673 K. The upper CMS layer was found to grow epitaxially on the Cu spacer layer despite the large lattice mismatch between Cu and CMS. The highest MR ratios of 8.6% and 30.7% for CPP-GMR were recorded at room temperature and 6 K, respectively. The high spin polarization of the epitaxial CMS layers is the most likely origin of the high MR ratio.
We report the evolution of magnetic moment as well as magnetic anisotropy with crystalline order in Co$_2$MnSi thin films grown on $(100)$ MgO by pulsed laser deposition. The films become more ordered as the annealing temperature ($T_A$) increases fr om 400 to 600 $^0$C. The extent of emph{L}$2_1$ ordering in the films annealed at 600 $^0$C is $approx 96%$. The static magnetization measurements by vibrating sample magnetometry shows a maximum moment of 4.95 $mu_B$ per formula unit with low coercivity ($H_C$ $approx$ 65 Oe) in the films annealed at 600 $^0$C. A rigorous analysis of the azimuthal and polar angle dependent ferromagnetic resonance (FMR) measured at several temperatures allows determination of various anisotropy fields relevant to our system as a function of $T_A$. Finally, we have evaluated the exchange stiffness constant down to 100 K using spin wave modes in FMR spectra. We have also estimated the exchange energies as well as stiffness constant by varying the lattice parameter emph{ab-initio} using the Korringa-Kohn-Rostoker method.
Half-metallic Heusler alloys are attracting considerable attention because of their unique half-metallic band structures which exhibit high spin polarization and yield huge magnetoresistance ratios. Besides serving as ferromagnetic electrodes, Heusle r alloys also have the potential to host spin-charge conversion which has been recently demonstrated in other ferromagnetic metals. Here, we report on the spin-charge conversion effect in the prototypical Heusler alloy NiMnSb. Spin currents were injected from Y3Fe5O12 into NiMnSb films by spin pumping, and then the spin currents were converted to charge currents via spin-orbit interactions. Interestingly, an unusual charge signal was observed with a sign change at low temperature, which can be manipulated by film thickness and ordering structure. It is found that the spin-charge conversion has two contributions. First, the interfacial contribution causes a negative voltage signal, which is almost constant versus temperature. The second contribution is temperature dependent because it is dominated by minority states due to thermally excited magnons in the bulk part of the film. This work provides a pathway for the manipulation of spin-charge conversion in ferromagnetic metals by interface-bulk engineering for spintronic devices.
We report the structure, magnetic property and spin polarization of CoFeMnGe equiatomic quaternary Heusler alloy. The alloy was found to exist in the L21 structure with considerable amount of DO3 disorder. Thermal analysis result indicated the Curie temperature is about 711K without any other phase transformation up to melting temperature. The magnetization value was close to that predicted by the Slater-Pauling curve. Current spin polarization of P = 0.70 {plus/minus}0.1 was deduced using point contact Andreev reflection (PCAR) measurements. Half-metallic trend in the resistivity has also been observed in the temperature range of 5 K to 300 K. Considering the high spin polarization and Curie temperature, this material appears to be promising for spintronic applications.
We determine experimentally the spin structure of half-metallic Co2FeAl0.4Si0.6 Heusler alloy elements using magnetic microscopy. Following magnetic saturation, the dominant magnetic states consist of quasi-uniform configurations, where a strong infl uence from the magnetocrystalline anisotropy is visible. Heating experiments show the stability of the spin configuration of domain walls in confined geometries up to 800 K. The switching temperature for the transition from transverse to vortex walls in ring elements is found to increase with ring width, an effect attributed to structural changes and consequent changes in magnetic anisotropy, which start to occur in the narrower elements at lower temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا