ﻻ يوجد ملخص باللغة العربية
The main goal of this work is to study systematically the quantum aspects of the interaction between scalar particles in the framework of Generalized Scalar Duffin-Kemmer-Petiau Electrodynamics (GSDKP). For this purpose the theory is quantized after a constraint analysis following Diracs methodology by determining the Hamiltonian transition amplitude. In particular, the covariant transition amplitude is established in the generalized non-mixing Lorenz gauge. The complete Greens functions are obtained through functional methods and the theorys renormalizability is also detailed presented. Next, the radiative corrections for the Greens functions at $alpha $-order are computed; and, as it turns out, an unexpected $m_{P}$-dependent divergence on the DKP sector of the theory is found. Furthermore, in order to show the effectiveness of the renormalization procedure on the present theory, a diagrammatic discussion on the photon self-energy and vertex part at $alpha ^{2}$-order are presented, where it is possible to observe contributions from the DKP self-energy function, and then analyse whether or not this novel divergence propagates to higher-order contributions. Lastly, an energy range where the theory is well defined: $m^{2}ll k^{2}<m_{p}^{2}$ was also found by evaluating the effective coupling for the GSDKP.
We investigate the breaking of Lorentz symmetry caused by the inclusion of an external four-vector via a Chern-Simons-like term in the Duffin-Kemmer-Petiau Lagrangian for massless and massive spin-one fields. The resulting equations of motion lead to
In this paper, we study the covariant Duffin-Kemmer-Petiau (DKP) equation in the space-time generated by a cosmic string and we examine the linear interaction of a DKP field with gravitational fields produced by topological defects and thus study the
We study subsolutions of the Dirac and Duffin-Kemmer-Petiau equations described in our earlier papers. It is shown that subsolutions of the Duffin-Kemmer-Petiau equations and those of the Dirac equation obey the same Dirac equation with some built-in
We study relation between the Duffin-Kemmer-Petiau algebras and some representations of Tzou algebras. Working in the setting of relativistic wave equations we reduce, via a similarity transformation, five and ten dimensional Duffin-Kemmer-Petiau alg
In the present work a transition from the spin-$0$ Duffin-Kemmer-Petiau equation to the Dirac equation is described. This transformation occurs when a crossed field changes into a certain longitudinal field. An experimental setup to carry out the transition is proposed.