ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning Magnetotransport in a Compensated Semimetal at the Atomic Scale

174   0   0.0 ( 0 )
 نشر من قبل Lin Wang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Either in bulk form, or when exfoliated into atomically thin crystals, layered transition metal dichalcogenides are continuously leading to the discovery of new phenomena. The latest example is provided by 1T-WTe$_2$, a semimetal recently found to exhibit the largest known magnetoresistance in bulk crystals, and predicted to become a two-dimensional topological insulator in strained monolayers. Here, we show that reducing the thickness through facile exfoliation provides an effective experimental knob to tune the electronic properties of WTe$_2$, which allows us to identify the microscopic mechanisms responsible for the observed classical and quantum magnetotransport down to the ultimate atomic scale. We find that the longitudinal resistance and the very unconventional B-dependence of the Hall resistance are reproduced quantitatively in terms of a classical two-band model for crystals as thin as six monolayers, and that for thinner crystals a crossover to an insulating, Anderson-localized state occurs. Besides establishing the origin of the very large magnetoresistance of bulk WTe$_2$, our results represent the first, complete validation of the classical theory for two-band electron-hole transport, and indicate that atomically thin WTe$_2$ layers remain gapless semimetals, from which we conclude that searching for a topological insulating state by straining monolayers is a challenging, but feasible experiment.



قيم البحث

اقرأ أيضاً

476 - L.-K. Zeng , R. Lou , D.-S. Wu 2016
By combining angle-resolved photoemission spectroscopy and quantum oscillation measurements, we performed a comprehensive investigation on the electronic structure of LaSb, which exhibits near-quadratic extremely large magnetoresistance (XMR) without any sign of saturation at magnetic fields as high as 40 T. We clearly resolve one spherical and one intersecting-ellipsoidal hole Fermi surfaces (FSs) at the Brillouin zone (BZ) center $Gamma$ and one ellipsoidal electron FS at the BZ boundary $X$. The hole and electron carriers calculated from the enclosed FS volumes are perfectly compensated, and the carrier compensation is unaffected by temperature. We further reveal that LaSb is topologically trivial but share many similarities with the Weyl semimetal TaAs family in the bulk electronic structure. Based on these results, we have examined the mechanisms that have been proposed so far to explain the near-quadratic XMR in semimetals.
The results of experimental study of the magnetoresistivity, the Hall and Shubnikov-de Haas effects for the heterostructure with HgTe quantum well of 20.2 nm width are reported. The measurements were performed on the gated samples over the wide range of electron and hole densities including vicinity of a charge neutrality point. Analyzing the data we conclude that the energy spectrum is drastically different from that calculated in framework of $kP$-model. So, the hole effective mass is equal to approximately $0.2 m_0$ and practically independent of the quasimomentum ($k$) up to $k^2gtrsim 0.7times 10^{12}$ cm$^{-2}$, while the theory predicts negative (electron-like) effective mass up to $k^2=6times 10^{12}$ cm$^{-2}$. The experimental effective mass near k=0, where the hole energy spectrum is electron-like, is close to $-0.005 m_0$, whereas the theoretical value is about $-0.1 m_0$.
Tunneling is a fundamental quantum process with no classical equivalent, which can compete with Coulomb interactions to give rise to complex phenomena. Phosphorus dopants in silicon can be placed with atomic precision to address the different regimes arising from this competition. However, they exploit wavefunctions relying on crystal band symmetries, which tunneling interactions are inherently sensitive to. Here we directly image lattice-aperiodic valley interference between coupled atoms in silicon using scanning tunneling microscopy. Our atomistic analysis unveils the role of envelope anisotropy, valley interference and dopant placement on the Heisenberg spin exchange interaction. We find that the exchange can become immune to valley interference by engineering in-plane dopant placement along specific crystallographic directions. A vacuum-like behaviour is recovered, where the exchange is maximised to the overlap between the donor orbitals, and pair-to-pair variations limited to a factor of less than 10 considering the accuracy in dopant positioning. This robustness remains over a large range of distances, from the strongly Coulomb interacting regime relevant for high-fidelity quantum computation to strongly coupled donor arrays of interest for quantum simulation in silicon.
The physics of the crossover between weak-coupling Bardeen-Cooper-Schrieffer (BCS) and strong-coupling Bose-Einstein-condensate (BEC) limits gives a unified framework of quantum bound (superfluid) states of interacting fermions. This crossover has be en studied in the ultracold atomic systems, but is extremely difficult to be realized for electrons in solids. Recently, the superconducting semimetal FeSe with a transition temperature $T_{rm c}=8.5$ K has been found to be deep inside the BCS-BEC crossover regime. Here we report experimental signatures of preformed Cooper pairing in FeSe below $T^*sim20$ K, whose energy scale is comparable to the Fermi energies. In stark contrast to usual superconductors, large nonlinear diamagnetism by far exceeding the standard Gaussian superconducting fluctuations is observed below $T^*sim20$ K, providing thermodynamic evidence for prevailing phase fluctuations of superconductivity. Nuclear magnetic resonance (NMR) and transport data give evidence of pseudogap formation at $sim T^*$. The multiband superconductivity along with electron-hole compensation in FeSe may highlight a novel aspect of the BCS-BEC crossover physics.
Understanding the formation of metal-molecule contact at the microscopic level is the key towards controlling and manipulating atomic scale devices. Employing two isomers of bipyridine, $4, 4^prime$ bipyridine and $2, 2^prime$ bipyridine between gold electrodes, here, we investigate the formation of metal-molecule bond by studying charge transport through single molecular junctions using a mechanically controlled break junction technique at room temperature. While both molecules form molecular junctions during the breaking process, closing traces show the formation of molecular junctions unambiguously for $4, 4^prime$ bipyridine via a conductance jump from the tunneling regime, referred as `jump to molecular contact, being absent for $2, 2^prime$ bipyridine. Through statistical analysis of the data, along with, molecular dynamics and first-principles calculations, we establish that contact formation is strongly connected with the molecular structure of the electrodes as well as how the junction is broken during breaking process, providing important insights for using a single-molecule in an electronic device.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا