ﻻ يوجد ملخص باللغة العربية
We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nano selective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defective crystals in the heteroepitaxial growth of nitrides, and the high mobility graphene film can readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. The process consists in first growing a 5-8 graphene layers film on the C-face of 4H- SiC by confinement-controlled sublimation of silicon carbide. The graphene film is then patterned and arrays of 75-nanometer-wide openings are etched in graphene revealing the SiC substrate. 30-nanometer-thick GaN is subsequently grown by metal organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in openings patterned through graphene, with no nucleation on graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal hexagonal wurtzite. The GaN crystalline nanomesas have no threading dislocations, and do not show any V-pit. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene / silicon carbide platform.
An in vacuo thermal desorption process has been accomplished to form epitaxial graphene (EG) on 4H- and 6H-SiC substrates using a commercial chemical vapor deposition reactor. Correlation of growth conditions and the morphology and electrical propert
Patterning of graphene is key for device fabrication. We report a way to increase or reduce the number of layers in epitaxial graphene grown on the C-face (000-1) of silicon carbide by the deposition of a 120 nm to 150nm-thick silicon nitride (SiN) m
Epitaxial graphene grown on SiC by the confinement controlled sublimation method is reviewed, with an emphasis on multilayer and monolayer epitaxial graphene on the carbon face of 4H-SiC and on directed and selectively grown structures under growth-a
We present a structural analysis of the graphene-4HSiC(0001) interface using surface x-ray reflectivity. We find that the interface is composed of an extended reconstruction of two SiC bilayers. The interface directly below the first graphene sheet i
We demonstrate hydrogen assisted growth of high quality epitaxial graphene on the C-face of 4H-SiC. Compared with the conventional thermal decomposition technique, the size of the growth domain by this method is substantially increased and the thickn