ﻻ يوجد ملخص باللغة العربية
Magneto-dielectric spectra of La0.95Ca0.05CoO3 covering the crossover of spin states reveals strong coupling of its spin and dipolar degrees of freedom. Signature of spin-state transition at 30K clearly manifests in magnetization, supported by Co L_3,2-edge XAS data on the doped-specimen as consistent with its suppressed T_SST vs. ~150K for pure LaCoO3. Dispersive activation-step {Delta}{epsilon}(T_{omega})~O(10^2) and relaxation-peak {epsilon}(T_{omega}) reflect the allied influence of coexistent spin-states on the dielectric character. Dipolar relaxation in the LS regime below T_SST is partly segmental (VFT kinetics) featuring magnetic-field tunability, whereas in the LS/IS-spin disordered state above 30K, it is uncorrelated (Arrhenic kinetics) and almost impervious to the H-field. Kinetics-switchover defines the dipolar-glass transition temperature Tg(H), below which the magneto-thermally-activated cooperative relaxations freeze-out by the VFT temperature T_0(H). Applied H-field facilitates thermally-activated SST and accelerates the dipolar relaxations; a critical 5T field collapsing the entire kinetics into a single Arrhenic behavior. Magneto-electricity (ME) spanning sizable thermo-spectral range registers diverse signatures here in the kinetic, spectral, and field behaviors, in contrast to the static/perturbative ME observed close to the spin-ordering in typical multiferroics. Intrinsic magneto-dielectricity (50%) along with vanishing magneto-loss is obtained at (27K/50kHz)_9T. Sub-linear deviant field-hysteretic split seen in {epsilon}(H)|_>4T suggests the emergence of robust dipoles organized into nano-clusters, realized by the internally-generated high magneto-electric field. An elaborate {omega}-T multi-dispersions diagram maps the rich variety of phase/response patterns, revealing the highly-interacting magnetic and electric moments in the system.
Using high resolution neutron diffraction and capacitance dilatometry we show that the thermal evolution of the helimagnetic state in CoMnSi is accompanied by a change in inter-atomic distances of up to 2%, the largest ever found in a metallic magnet
Giant magneto-Seebeck (GMS) effect was observed in Co/Cu/Co and NiFe/Cu/Co spin valves. Their Seebeck coefficients in parallel state was larger than that in antiparallel state, and GMS ratio defined as (SAP-SP)/SP could reach -9% in our case. The GMS
We report on isothermal pulsed (20 ms) field magnetization, temperature dependent AC - susceptibility, and the static low magnetic field measurements carried out on 10 nm sized Pr0.5Ca0.5MnO3 nanoparticles (PCMO10). The saturation field for the magne
Famous for its spin-state puzzle, LaSrCoO$_4$ (Co$^{3+}$) is an intermediate between antiferromagnetic (AFM) La$_2$CoO$_4$ (Co$^{2+}$) and ferromagnetic (FM) Sr$_2$CoO$_4$ (Co$^{4+}$). The appearance of the Co$^{3+}$ valence state (not present in the
Magneto-intersubband resistance oscillations (MISO) of highly mobile 2D electrons in symmetric GaAs quantum wells with two populated subbands are studied in magnetic fields tilted from the normal to the 2D electron layer at different temperatures $T$