ﻻ يوجد ملخص باللغة العربية
Global, secure quantum channels will require efficient distribution of entangled photons. Long distance, low-loss interconnects can only be realized using photons as quantum information carriers. However, a quantum light source combining both high qubit fidelity and on-demand bright emission has proven elusive. Here, we show a bright photonic nanostructure generating polarization-entangled photon-pairs that strongly violates Bells inequality. A highly symmetric InAsP quantum dot generating entangled photons is encapsulated in a tapered nanowire waveguide to ensure directional emission and efficient light extraction. We collect $sim$200 kHz entangled photon-pairs at the first lens under 80,MHz pulsed excitation, which is a 20 times enhancement as compared to a bare quantum dot without a photonic nanostructure. The performed Bell test using the Clauser-Horne-Shimony-Holt inequality reveals a clear violation ($S_{text{CHSH}}>2$) by up to 9.3 standard deviations. By using a novel quasi-resonant excitation scheme at the wurtzite InP nanowire resonance to reduce multi-photon emission, the entanglement fidelity ($F=0.817,pm,0.002$) is further enhanced without temporal post-selection, allowing for the violation of Bells inequality in the rectilinear-circular basis by 25 standard deviations. Our results on nanowire-based quantum light sources highlight their potential application in secure data communication utilizing measurement-device-independent quantum key distribution and quantum repeater protocols.
Precision measurements of optical phases have many applications in science and technology. Entangled multi-photon states have been suggested for performing such measurements with precision that significantly surpasses the shot-noise limit. Until rece
We propose and theoretically analyze a new scheme for generating hyper-entangled photon pairs in a system of polaritons in coupled planar microcavities. Starting from a microscopic model, we evaluate the relevant parametric scattering processes and n
Recent proposals to test Bells inequalities with entangled pairs of pseudoscalar mesons are reviewed. This includes pairs of neutral kaons or B-mesons and offers some hope to close both the locality and the detection loopholes. Specific difficulties,
On-demand sources of entangled photons for the transmission of quantum information in the telecom C-band are required to realize fiber-based quantum networks. So far, non-deterministic sources of quantum states of light were used for long distance en
The realisation of a triggered entangled photon source will be of great importance in quantum information, including for quantum key distribution and quantum computation. We show here that: 1) the source reported in ``A semiconductor source of trigge