ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical decay index at the onset of solar eruptions

70   0   0.0 ( 0 )
 نشر من قبل Francesco Zuccarello
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic flux ropes are topological structures consisting of twisted magnetic field lines that globally wrap around an axis. The torus instability model predicts that a magnetic flux rope of major radius $R$ undergoes an eruption when its axis reaches a location where the decay index $-d(ln B_{ex})/d(ln R)$ of the ambient magnetic field $B_{ex}$ is larger than a critical value. In the current-wire model, the critical value depends on the thickness and time-evolution of the current channel. We use magneto-hydrodynamic (MHD) simulations to investigate if the critical value of the decay index at the onset of the eruption is affected by the magnetic flux ropes internal current profile and/or by the particular pre-eruptive photospheric dynamics. The evolution of an asymmetric, bipolar active region is driven by applying different classes of photospheric motions. We find that the critical value of the decay index at the onset of the eruption is not significantly affected by either the pre-eruptive photospheric evolution of the active region or by the resulting different magnetic flux ropes. As in the case of the current-wire model, we find that there is a `critical range $ [1.3-1.5]$, rather than a `critical value for the onset of the torus instability. This range is in good agreement with the predictions of the current-wire model, despite the inclusion of line-tying effects and the occurrence of tether-cutting magnetic reconnection.



قيم البحث

اقرأ أيضاً

Electric currents play a critical role in the triggering of solar flares and their evolution. The aim of the present paper is to test whether the surface electric current has a surface or subsurface fixed source as predicts the circuit approach of fl are physics, or is the response of the surface magnetic field to the evolution of the coronal magnetic field as the MHD approach proposes. Out of all 19 X-class flares as observed by SDO from 2011 to 2016 near the disk center, we analyzed the only 9 eruptive flares for which clear ribbon-hooks were identifiable. Flare ribbons with hooks are considered to be the footprints of eruptive flux ropes in MHD flare models. For the first time, fine measurements of time-evolution of electric currents inside the hooks in the observations as well as in the OHM 3D MHD simulation are performed. Our analysis shows a decrease of the electric current in the area surrounded by the ribbon hooks during and after the eruption. We interpret the decrease of the electric currents as due to the expansion of the flux rope in the corona during the eruption. Our analysis brings a new contribution to the standard flare model in 3D.
105 - I. M. Chertok 2014
Solar coronal mass ejections (CMEs) are main drivers of the most powerful non-recurrent geomagnetic storms. In the extreme-ultraviolet range, CMEs are accompanied by bright post-eruption arcades and dark dimmings. The analysis of events of the Solar Cycle 23 (Chertok et al., 2013, Solar Phys. 282, 175) revealed that the summarized unsigned magnetic flux in the arcades and dimming regions at the photospheric level, $Phi$, is significantly related to the intensity (Dst index) of geomagnetic storms. This provides the basis for the earliest diagnosis of geoefficiency of solar eruptions. In the present article, using the same data set, we find that a noticeable correlation exists also between the eruptive magnetic flux, $Phi$, and another geomagnetic index, Ap. As the magnetic flux increases from tens to $approx 500$ (in units of $10^{20}$ Mx), the geomagnetic storm intensity measured by the 3-hour Ap index, enhances in average from Ap $approx 50$ to a formally maximum value of 400 (in units of 2 nT). The established relationship shows that in fact the real value of the Ap index is not limited and during the most severe magnetic storms may significantly exceed 400.
Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejec tions and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt.
Filaments, the dense cooler plasma floating in the solar corona supported by magnetic fields, generally exhibit certain activations before they erupt. In our previous study (Seki et al. 2017 ), we observed that the standard deviation of the line-of-s ight (LOS) velocities of the small-scale motions in a filament increased prior to its eruption. However, because that study only analyzed one event, it is unclear whether such an increase in the standard deviation of LOS velocities is common in filament eruptions. In this study, 12 filaments that vanished in H{alpha} line center images were analyzed in a manner similar to the one in our previous work; these included two quiescent filaments, four active region filaments, and six intermediate filaments. We verified that in all the 12 events, the standard deviation of the LOS velocities increased before the filaments vanished. Moreover, we observed that the quiescent filaments had approximately 10 times longer duration of an increase in the standard deviation than the other types of filaments. We concluded that the standard deviation of the LOS velocities of the small-scale motions in a filament can potentially be used as the precursor of a filament eruption.
The solar surface is covered by high-speed jets transporting mass and energy into the solar corona and feeding the solar wind. The most prominent of these jets have been known as spicules. However, the mechanism initiating these eruptions events is s till unknown. Using realistic numerical simulations we find that small-scale eruptions are produced by ubiquitous magnetized vortex tubes generated by the Suns turbulent convection in subsurface layers. The swirling vortex tubes (resembling tornadoes) penetrate into the solar atmosphere, capture and stretch background magnetic field, and push surrounding material up, generating quasiperiodic shocks. Our simulations reveal a complicated high-speed flow patterns, and thermodynamic and magnetic structure in the erupting vortex tubes. We found that the eruptions are initiated in the subsurface layers and are driven by the high-pressure gradients in the subphotosphere and photosphere, and by the Lorentz force in the higher atmosphere layers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا