ﻻ يوجد ملخص باللغة العربية
The spin-momentum locking at the Dirac surface state of a topological insulator (TI) offers a distinct possibility of a highly efficient charge-to-spin current (C-S) conversion compared with spin Hall effects in conventional paramagnetic metals. For the development of TI-based spin current devices, it is essential to evaluate its conversion efficiency quantitatively as a function of the Fermi level EF position. Here we exemplify a coefficient of qICS to characterize the interface C-S conversion effect by using spin torque ferromagnetic resonance (ST-FMR) for (Bi1-xSbx)2Te3 thin films whose EF is tuned across the band gap. In bulk insulating conditions, interface C-S conversion effect via Dirac surface state is evaluated as nearly constant large values of qICS, reflecting that the qICS is inversely proportional to the Fermi velocity vF that is almost constant. However, when EF traverses through the Dirac point, the qICS is remarkably suppressed possibly due to the degeneracy of surface spins or instability of helical spin structure. These results demonstrate that the fine tuning of the EF in TI based heterostructures is critical to maximizing the efficiency using the spin-momentum locking mechanism.
The unoccupied states in topological insulators Bi_2Se_3, PbSb_2Te_4, and Pb_2Bi_2Te_2S_3 are studied by the density functional theory methods. It is shown that a surface state with linear dispersion emerges in the inverted conduction band energy gap
We have investigated spin-electricity conversion on surface states of bulk-insulating topological insulator (TI) materials using a spin pumping technique. The sample structure is Ni-Fe|Cu|TI trilayers, in which magnetic proximity effects on the TI su
We present a short pedagogical introduction to the physics of Dirac materials, restricted to graphene and two- dimensional topological insulators. We start with a brief reminder of the Dirac and Weyl equations in the particle physics context. Turning
Topological spintronics aims to exploit the spin-momentum locking in the helical surface states of topological insulators for spin-orbit torque devices. We address a fundamental question that still remains unresolved in this context: does the topolog
Spin Hall effect, an electric generation of spin current, allows for efficient control of magnetization. Recent theory revealed that orbital Hall effect creates orbital current, which can be much larger than spin Hall-induced spin current. However, o