ترغب بنشر مسار تعليمي؟ اضغط هنا

Yang-Baxter sigma models and Lax pairs arising from $kappa$-Poincare $r$-matrices

101   0   0.0 ( 0 )
 نشر من قبل Hideki Kyono
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study Yang-Baxter sigma models with deformed 4D Minkowski spacetimes arising from classical $r$-matrices associated with $kappa$-deformations of the Poincare algebra. These classical $kappa$-Poincare $r$-matrices describe three kinds of deformations: 1) the standard deformation, 2) the tachyonic deformation, and 3) the light-cone deformation. For each deformation, the metric and two-form $B$-field are computed from the associated $r$-matrix. The first two deformations, related to the modified classical Yang-Baxter equation, lead to T-duals of dS$_4$ and AdS$_4$,, respectively. The third deformation, associated with the homogeneous classical Yang-Baxter equation, leads to a time-dependent pp-wave background. Finally, we construct a Lax pair for the generalized $kappa$-Poincare $r$-matrix that unifies the three kinds of deformations mentioned above as special cases.



قيم البحث

اقرأ أيضاً

We explicitly derive Lax pairs for string theories on Yang-Baxter deformed backgrounds, 1) gravity duals for noncommutative gauge theories, 2) $gamma$-deformations of S$^5$, 3) Schrodinger spacetimes and 4) abelian twists of the global AdS$_5$,. Then we can find out a concise derivation of Lax pairs based on simple replacement rules. Furthermore, each of the above deformations can be reinterpreted as a twisted periodic boundary conditions with the undeformed background by using the rules. As another derivation, the Lax pair for gravity duals for noncommutative gauge theories is reproduced from the one for a $q$-deformed AdS$_5times$S$^5$ by taking a scaling limit.
We show how to get a non-commutative product for functions on space-time starting from the deformation of the coproduct of the Poincare group using the Drinfeld twist. Thus it is easy to see that the commutative algebra of functions on space-time (R^ 4) can be identified as the set of functions on the Poincare group invariant under the right action of the Lorentz group provided we use the standard coproduct for the Poincare group. We obtain our results for the noncommutative Moyal plane by generalizing this result to the case of the twisted coproduct. This extension is not trivial and involves cohomological features. As is known, spacetime algebra fixes the coproduct on the dffeomorphism group of the manifold. We now see that the influence is reciprocal: they are strongly tied.
Using the methods of ordinary quantum mechanics we study $kappa$-Minkowski space as a quantum space described by noncommuting self-adjoint operators, following and enlarging arXiv:1811.08409. We see how the role of Fourier transforms is played in thi s case by Mellin transforms. We briefly discuss the role of transformations and observers.
This work concerns the quantum Lorentzian and Euclidean black hole non-linear sigma models. For the Euclidean black hole sigma model an equilibrium density matrix is proposed, which reproduces the modular invariant partition function from the 2001 pa per of Maldacena, Ooguri and Son. For the Lorentzian black hole sigma model, using its formulation as a gauged ${rm SL}(2,mathbb{R})$ WZW model, we describe the linear and Hermitian structure of its space of states and also propose an expression for the equilibrium density matrix. Our analysis is guided by the results of the study of a certain critical, integrable spin chain. In the scaling limit, the latter exhibits the key features of the Lorentzian black hole sigma model including the same global symmetries, the same algebra of extended conformal symmetry and a continuous spectrum of conformal dimensions.
From pure Yang-Mills action for the $SL(5,mathbb{R})$ group in four Euclidean dimensions we obtain a gravity theory in the first order formalism. Besides the Einstein-Hilbert term, the effective gravity has a cosmological constant term, a curvature s quared term, a torsion squared term and a matter sector. To obtain such geometrodynamical theory, asymptotic freedom and the Gribov parameter (soft BRST symmetry breaking) are crucial. Particularly, Newton and cosmological constant are related to these parameters and they also run as functions of the energy scale. One-loop computations are performed and the results are interpreted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا