ﻻ يوجد ملخص باللغة العربية
We give efficient algorithms for ranking Lyndon words of length n over an alphabet of size {sigma}. The rank of a Lyndon word is its position in the sequence of lexicographically ordered Lyndon words of the same length. The outputs are integers of exponential size, and complexity of arithmetic operations on such large integers cannot be ignored. Our model of computations is the word-RAM, in which basic arithmetic operations on (large) numbers of size at most {sigma}^n take O(n) time. Our algorithm for ranking Lyndon words makes O(n^2) arithmetic operations (this would imply directly cubic time on word-RAM). However, using an algebraic approach we are able to reduce the total time complexity on the word-RAM to O(n^2 log {sigma}). We also present an O(n^3 log^2 {sigma})-time algorithm that generates the Lyndon word of a given length and rank in lexicographic order. Finally we use the connections between Lyndon words and lexicographically minimal de Bruijn sequences (theorem of Fredricksen and Maiorana) to develop the first polynomial-time algorithm for decoding minimal de Bruijn sequence of any rank n (it determines the position of an arbitrary word of length n within the de Bruijn sequence).
We present a space- and time-efficient fully dynamic implementation de Bruijn graphs, which can also support fixed-length jumbled pattern matching.
In this paper, we extend the notion of Lyndon word to transfinite words. We prove two main results. We first show that, given a transfinite word, there exists a unique factorization in Lyndon words that are densely non-increasing, a relaxation of the
The notion of emph{string attractor} has recently been introduced in [Prezza, 2017] and studied in [Kempa and Prezza, 2018] to provide a unifying framework for known dictionary-based compressors. A string attractor for a word $w=w[1]w[2]cdots w[n]$ i
A generalized lexicographical order on infinite words is defined by choosing for each position a total order on the alphabet. This allows to define generalized Lyndon words. Every word in the free monoid can be factorized in a unique way as a nonincr
In this paper we compare two finite words $u$ and $v$ by the lexicographical order of the infinite words $u^omega$ and $v^omega$. Informally, we say that we compare $u$ and $v$ by the infinite order. We show several properties of Lyndon words express