ﻻ يوجد ملخص باللغة العربية
We study the semileptonic decay of $Lambda_c$ to $ u l^+$ and $Lambda(1405)$, where the $Lambda(1405)$ is seen in the invariant mass distribution of $pi Sigma$. We perform the hadronization of the quarks produced in the reaction in order to have a meson baryon pair in the final state and then let these hadron pairs undergo final state interaction from where the $Lambda(1405)$ is dynamically generated. The reaction is particularly suited to study this resonance because we show that it filters I=0. It is also free of tree level $pi Sigma$ production, which leads to a clean signal of the resonance with no background. This same feature has as a consequence that one populates the state of the $Lambda(1405)$ with higher mass around 1420 MeV, predicted by the chiral unitary approach. We make absolute predictions for the invariant mass distributions and find them within measurable range in present facilities. The implementation of this reaction would allow us to gain insight into the existence of the predicted two $Lambda(1405)$ states and their nature as molecular states.
We evaluate the partial decay widths for the semileptonic $Lambda_b to bar u_l l Lambda_c(2595)$ and $Lambda_b to bar u_l l Lambda_c(2625)$ decays from the perspective that these two $Lambda^*_c$ resonances are dynamically generated from the $DN$ a
We present our study on $B to pi l u$ semileptonic decay form factors with NRQCD action for heavy quark from a quenched lattice QCD simulation at $beta$=5.9 on a $16^3times 48$ lattice. We obtain form factors defined in the context of heavy quark ef
We present a lattice QCD calculation of $Bto pi l u$ semileptonic decay form factors in the small pion recoil momentum region. The calculation is performed on a quenched $16^3 times 48$ lattice at $beta=5.9$ with the NRQCD action including the full
We calculate the $Lambda_b to Lambda_c^*(2595) l u$ and $Lambda_b to Lambda_c^*(2625) l u$ form factors and decay rates for all possible $b to c l bar u$ four-Fermi interactions in and beyond the Standard Model (SM), including nonzero charged lepto
Inclusive semileptonic B_s^0 -> X^+ l^- u decays are studied for the first time using a 23.6 fb^{-1} data sample collected on the Y(5S) resonance with the Belle detector at the KEKB asymmetric energy e^+ e^- collider. These decays are identified by