ﻻ يوجد ملخص باللغة العربية
HD5550 is a spectroscopic binary composed of two A stars observed with Narval at TBL in the frame of the BinaMIcS (Binarity and Magnetic Interactions in various classes of Stars) Large Program. One component of the system is found to be an Ap star with a surprisingly weak dipolar field of ~65 G. The companion is an Am star for which no magnetic field is detected, with a detection threshold on the dipolar field of ~40 G. The system is tidally locked, the primary component is synchronised with the orbit, but the system is probably not completely circularised yet. This work is only the second detailed study of magnetic fields in a hot short-period spectroscopic binary. More systems are currently being observed with both Narval at TBL and ESPaDOnS at CFHT within the BinaMIcS project, with the goal of understanding how magnetism can impact binary evolution and vice versa.
About 10% of hot stars host a fossil magnetic field on the pre-main sequence and main sequence. However, the first magnetic evolved hot stars have been discovered only recently. An observing program has been set up to find more such objects. This wil
Massive stars play a significant role in the chemical and dynamical evolution of galaxies. However, much of their variability, particularly during their evolved supergiant stage, is poorly understood. To understand the variability of evolved massive
YY Gem is a short-period eclipsing binary system containing two nearly identical, rapidly rotating, very active early-M dwarfs. This binary represents an important benchmark system for calibrating empirical relations between fundamental properties of
The survey of radial velocity orbits for short period (P < 1 day), bright (V < 10, with a few fainter stars) conducted at the David Dunlap Observatory in the last 9 years before its closure in 2008 included 162 binaries and resulted in 150 SB2 orbits
We present the results of a study of the star HD 34736. The spectropolarimetric observations carried out at the 6-m telescope showed the presence of a strong variable longitudinal magnetic field, exceeding -4500 G. The analysis of the HIPPARCOS photo