ترغب بنشر مسار تعليمي؟ اضغط هنا

MOA-2010-BLG-353Lb A Possible Saturn Revealed

285   0   0.0 ( 0 )
 نشر من قبل Nicholas Rattenbury
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of a possible planet in microlensing event MOA-2010-BLG-353. This event was only recognised as having a planetary signal after the microlensing event had finished, and following a systematic analysis of all archival data for binary lens microlensing events collected to date. Data for event MOA-2010-BLG-353 were only recorded by the high cadence observations of the OGLE and MOA survey groups. If we make the assumptions that the probability of the lens star hosting a planet of the measured mass ratio is independent of the lens star mass or distance, and that the source star is in the Galactic bulge, a probability density analysis indicates the planetary system comprises a 0.9^{+1.6}_{-0.53} M_{Saturn} mass planet orbiting a 0.18^{+0.32}_{-0.11} M_{sun} red dwarf star, 6.43^{+1.09}_{-1.15} kpc away. The projected separation of the planet from the host star is 1.72^{+0.56}_{-0.48} AU. Under the additional assumption that the source is on the far side of the Galactic bulge, the probability density analysis favours a lens system comprising a slightly lighter planet.



قيم البحث

اقرأ أيضاً

259 - N. Miyake , T. Sumi , Subo Dong 2010
We report the gravitational microlensing discovery of a sub-Saturn mass planet, MOA-2009-BLG-319Lb, orbiting a K or M-dwarf star in the inner Galactic disk or Galactic bulge. The high cadence observations of the MOA-II survey discovered this microlen sing event and enabled its identification as a high magnification event approximately 24 hours prior to peak magnification. As a result, the planetary signal at the peak of this light curve was observed by 20 different telescopes, which is the largest number of telescopes to contribute to a planetary discovery to date. The microlensing model for this event indicates a planet-star mass ratio of q = (3.95 +/- 0.02) x 10^{-4} and a separation of d = 0.97537 +/- 0.00007 in units of the Einstein radius. A Bayesian analysis based on the measured Einstein radius crossing time, t_E, and angular Einstein radius, theta_E, along with a standard Galactic model indicates a host star mass of M_L = 0.38^{+0.34}_{-0.18} M_{Sun} and a planet mass of M_p = 50^{+44}_{-24} M_{Earth}, which is half the mass of Saturn. This analysis also yields a planet-star three-dimensional separation of a = 2.4^{+1.2}_{-0.6} AU and a distance to the planetary system of D_L = 6.1^{+1.1}_{-1.2} kpc. This separation is ~ 2 times the distance of the snow line, a separation similar to most of the other planets discovered by microlensing.
332 - K.Furusawa , A.Udalski , T.Sumi 2013
We analyze the planetary microlensing event MOA-2010-BLG-328. The best fit yields host and planetary masses of Mh = 0.11+/-0.01 M_{sun} and Mp = 9.2+/-2.2M_Earth, corresponding to a very late M dwarf and sub-Neptune-mass planet, respectively. The sys tem lies at DL = 0.81 +/- 0.10 kpc with projected separation r = 0.92 +/- 0.16 AU. Because of the hosts a-priori-unlikely close distance, as well as the unusual nature of the system, we consider the possibility that the microlens parallax signal, which determines the host mass and distance, is actually due to xallarap (source orbital motion) that is being misinterpreted as parallax. We show a result that favors the parallax solution, even given its close host distance. We show that future high-resolution astrometric measurements could decisively resolve the remaining ambiguity of these solutions.
We present an adaptive optics (AO) analysis of images from the Keck-II telescope NIRC2 instrument of the planetary microlensing event MOA-2009-BLG-319. The $sim$10 year baseline between the event and the Keck observations allows the planetary host st ar to be detected at a separation of $66.5pm 1.7,$mas from the source star, consistent with the light curve model prediction. The combination of the host star brightness and light curve parameters yield host star and planet masses of M_host = 0.514 $pm$ 0.063M_Sun and m_p = 66.0 $pm$ 8.1M_Earth at a distance of $D_L = 7.0 pm 0.7,$kpc. The star-planet projected separation is $2.03 pm 0.21,$AU. The planet-star mass ratio of this system, $q = (3.857 pm 0.029)times 10^{-4}$, places it in the predicted planet desert at $10^{-4} < q < 4times 10^{-4}$ according to the runaway gas accretion scenario of the core accretion theory. Seven of the 30 planets in the Suzuki et al. (2016) sample fall in this mass ratio range, and this is the third with a measured host mass. All three of these host stars have masses of 0.5 $leq$ M_host/M_Sun $leq$ 0.7, which implies that this predicted mass ratio gap is filled with planets that have host stars within a factor of two of 1M_Sun. This suggests that runaway gas accretion does not play a major role in determining giant planet masses for stars somewhat less massive than the Sun. Our analysis has been accomplished with a modified DAOPHOT code that has been designed to measure the brightness and positions of closely blended stars. This will aid in the development of the primary method that the Nancy Grace Roman Space Telescope mission will use to determine the masses of microlens planets and their hosts.
We analyze MOA-2010-BLG-311, a high magnification (A_max>600) microlensing event with complete data coverage over the peak, making it very sensitive to planetary signals. We fit this event with both a point lens and a 2-body lens model and find that the 2-body lens model is a better fit but with only Delta chi^2~80. The preferred mass ratio between the lens star and its companion is $q=10^(-3.7+/-0.1), placing the candidate companion in the planetary regime. Despite the formal significance of the planet, we show that because of systematics in the data the evidence for a planetary companion to the lens is too tenuous to claim a secure detection. When combined with analyses of other high-magnification events, this event helps empirically define the threshold for reliable planet detection in high-magnification events, which remains an open question.
192 - A. Gould 2012
The Galactic bulge source MOA-2010-BLG-523S exhibited short-term deviations from a standard microlensing lightcurve near the peak of an Amax ~ 265 high-magnification microlensing event. The deviations originally seemed consistent with expectations fo r a planetary companion to the principal lens. We combine long-term photometric monitoring with a previously published high-resolution spectrum taken near peak to demonstrate that this is an RS CVn variable, so that planetary microlensing is not required to explain the lightcurve deviations. This is the first spectroscopically confirmed RS CVn star discovered in the Galactic bulge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا