ﻻ يوجد ملخص باللغة العربية
The Modified Newtonian Dynamics (MOND) paradigm generically predicts that the external gravitational field in which a system is embedded can produce effects on its internal dynamics. In this communication, we first show that this External Field Effect can significantly improve some galactic rotation curves fits by decreasing the predicted velocities of the external part of the rotation curves. In modified gravi
We study geometries of galactic rotation curves from Dark Matter (DM) and Modified Newtonian Dynamics (MOND) models in $(g_{rm bar},g_{rm tot})$-space ($g2$-space) where $g_{rm tot}$ is the total centripetal acceleration of matter in the galaxies and
The Modified Newtonian Dynamics (MOND) and the Universal Rotation Curve (URC) are two ways to describe the general properties of rotation curves, with very different approaches concerning dark matter and gravity. Phenomenological similarities between
Although the Gauss-Bonnet term is a topological invariant for general relativity, it couples naturally to a quintessence scalar field, modifying gravity at solar system scales. We determine the solar system constraints due to this term by evaluating
We show that Solar System tests can place very strong constraints on K-mouflage models of gravity, which are coupled scalar field models with nontrivial kinetic terms that screen the fifth force in regions of large gravitational acceleration. In part
In this study the geometry of gas dominated galaxies in the SPARC database is analyzed in a normalized $(g_{bar},g_{obs})$-space ($g2$-space), where $g_{obs}$ is the observed centripetal acceleration and $g_{bar}$ is the centripetal acceleration as o