ﻻ يوجد ملخص باللغة العربية
We investigate the inverse problem of identifying a conditional probability measure in a measure-dependent dynamical system. We provide existence and well-posedness results and outline a discretization scheme for approximating a measure. For this scheme, we prove general method stability. The work is motivated by Partial Differential Equation (PDE) models of flocculation for which the shape of the post-fragmentation conditional probability measure greatly impacts the solution dynamics. To illustrate our methodology, we apply the theory to a particular PDE model that arises in the study of population dynamics for flocculating bacterial aggregates in suspension, and provide numerical evidence for the utility of the approach.
We study boundary value problems for degenerate elliptic equations and systems with square integrable boundary data. We can allow for degeneracies in the form of an $A_{2}$ weight. We obtain representations and boundary traces for solutions in approp
In this article, we investigate inverse source problems for a wide range of PDEs of parabolic and hyperbolic types as well as time-fractional evolution equations by partial interior observation. Restricting the source terms to the form of separated v
We consider a problem of quantitative static elastography, the estimation of the Lame parameters from internal displacement field data. This problem is formulated as a nonlinear operator equation. To solve this equation, we investigate the Landweber
Bayesian methods are actively used for parameter identification and uncertainty quantification when solving nonlinear inverse problems with random noise. However, there are only few theoretical results justifying the Bayesian approach. Recent papers,
We find the complete equivalence group of a class of (1+1)-dimensional second-order evolution equations, which is infinite-dimensional. The equivariant moving frame methodology is invoked to construct, in the regular case of the normalization procedu