ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry and dynamics universality of supermetal in quantum chaos

65   0   0.0 ( 0 )
 نشر من قبل Ping Fang Dr.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chaotic systems exhibit rich quantum dynamical behaviors ranging from dynamical localization to normal diffusion to ballistic motion. Dynamical localization and normal diffusion simulate electron motion in an impure crystal with a vanishing and finite conductivity, i.e., an Anderson insulator and a metal, respectively. Ballistic motion simulates a perfect crystal with diverging conductivity, i.e., a supermetal. We analytically find and numerically confirm that, for a large class of chaotic systems, the metal-supermetal dynamics crossover occurs and is universal, determined only by the systems symmetry. Furthermore, we show that the universality of this dynamics crossover is identical to that of eigenfunction and spectral fluctuations described by the random matrix theory.



قيم البحث

اقرأ أيضاً

122 - Bertin Many Manda 2021
We study the chaotic behavior of multidimensional Hamiltonian systems in the presence of nonlinearity and disorder. It is known that any localized initial excitation in a large enough linear disordered system spreads for a finite amount of time and t hen halts forever. This phenomenon is called Anderson localization (AL). What happens to AL when nonlinearity is introduced is an interesting question which has been considered in several studies over the past decades. However, the characteristics and the asymptotic fate of such evolutions still remain an issue of intense debate due to their computational difficulty, especially in systems of more than one spatial dimension. As the spreading of initially localized wave packets is a non-equilibrium thermalization process related to the ergodic and chaotic properties of the system, in our work we investigate the properties of chaos studying the behavior of observables related to the systems tangent dynamics. In particular, we consider the disordered discrete nonlinear Schrodinger (DDNLS) equation of one (1D) and two (2D) spatial dimensions. We present detailed computations of the time evolution of the systems maximum Lyapunov exponent (MLE--$Lambda$), and the related deviation vector distribution (DVD). We find that although the systems MLE decreases in time following a power law $t^{alpha_Lambda}$ with $alpha_Lambda <0$ for both the weak and strong chaos regimes, no crossover to the behavior $Lambda propto t^{-1}$ (which is indicative of regular motion) is observed. In addition, the analysis of the DVDs reveals the existence of random fluctuations of chaotic hotspots with increasing amplitudes inside the excited part of the wave packet, which assist in homogenizing chaos and contribute to the thermalization of more lattice sites.
We probe the limits of nonlinear wave spreading in disordered chains which are known to localize linear waves. We particularly extend recent studies on the regimes of strong and weak chaos during subdiffusive spreading of wave packets [EPL {bf 91}, 3 0001 (2010)] and consider strong disorder, which favors Anderson localization. We probe the limit of infinite disorder strength and study Frohlich-Spencer-Wayne models. We find that the assumption of chaotic wave packet dynamics and its impact on spreading is in accord with all studied cases. Spreading appears to be asymptotic, without any observable slowing down. We also consider chains with spatially inhomogeneous nonlinearity which give further support to our findings and conclusions.
Do nonlinear waves destroy Anderson localization? Computational and experimental studies yield subdiffusive nonequilibrium wave packet spreading. Chaotic dynamics and phase decoherence assumptions are used for explaining the data. We perform a quanti tative analysis of the nonequilibrium chaos assumption, and compute the time dependence of main chaos indicators - Lyapunov exponents and deviation vector distributions. We find a slowing down of chaotic dynamics, which does not cross over into regular dynamics up to the largest observed time scales, still being fast enough to allow for a thermalization of the spreading wave packet. Strongly localized chaotic spots meander through the system as time evolves. Our findings confirm for the first time that nonequilibrium chaos and phase decoherence persist, fueling the prediction of a complete delocalization.
We suggest that random matrix theory applied to a classical action matrix can be used in classical physics to distinguish chaotic from non-chaotic behavior. We consider the 2-D stadium billiard system as well as the 2-D anharmonic and harmonic oscill ator. By unfolding of the spectrum of such matrix we compute the level spacing distribution, the spectral auto-correlation and spectral rigidity. We observe Poissonian behavior in the integrable case and Wignerian behavior in the chaotic case. We present numerical evidence that the action matrix of the stadium billiard displays GOE behavior and give an explanation for it. The findings present evidence for universality of level fluctuations - known from quantum chaos - also to hold in classical physics.
The mechanism for transitions from phase to defect chaos in the one-dimensional complex Ginzburg-Landau equation (CGLE) is presented. We introduce and describe periodic coherent structures of the CGLE, called Modulated Amplitude Waves (MAWs). MAWs of various period P occur naturally in phase chaotic states. A bifurcation study of the MAWs reveals that for sufficiently large period P, pairs of MAWs cease to exist via a saddle-node bifurcation. For periods beyond this bifurcation, incoherent near-MAW structures occur which evolve toward defects. This leads to our main result: the transition from phase to defect chaos takes place when the periods of MAWs in phase chaos are driven beyond their saddle-node bifurcation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا