ﻻ يوجد ملخص باللغة العربية
In analogy with the Singleton defect for classical codes, we propose a definition of rank defect for Delsarte rank-metric codes. We characterize codes whose rank defect and dual rank defect are both zero, and prove that the rank distribution of such codes is determined by their parameters. This extends a result by Delsarte on the rank distribution of MRD codes. In the general case of codes of positive defect, we show that the rank distribution is determined by the parameters of the code, together the number of codewords of small rank. Moreover, we prove that if the rank defect of a code and its dual are both one, and the dimension satisfies a divisibility condition, then the number of minimum-rank codewords and dual minimum-rank codewords is the same. Finally, we discuss how our results specialize to Gabidulin codes.
This paper extends the study of rank-metric codes in extension fields $mathbb{L}$ equipped with an arbitrary Galois group $G = mathrm{Gal}(mathbb{L}/mathbb{K})$. We propose a framework for studying these codes as subspaces of the group algebra $mathb
This paper investigates the theory of sum-rank metric codes for which the individual matrix blocks may have different sizes. Various bounds on the cardinality of a code are derived, along with their asymptotic extensions. The duality theory of sum-ra
We derive simplified sphere-packing and Gilbert--Varshamov bounds for codes in the sum-rank metric, which can be computed more efficiently than previous ones. They give rise to asymptotic bounds that cover the asymptotic setting that has not yet been
In 1997, Shor and Laflamme defined the weight enumerators for quantum error-correcting codes and derived a MacWilliams identity. We extend their work by introducing our double weight enumerators and complete weight enumerators. The MacWilliams identi
Polar codes are a class of linear block codes that provably achieves channel capacity, and have been selected as a coding scheme for $5^{rm th}$ generation wireless communication standards. Successive-cancellation (SC) decoding of polar codes has med