ﻻ يوجد ملخص باللغة العربية
After the LHC Run 1, the standard model (SM) of particle physics has been completed. Yet, despite its successes, the SM has shortcomings vis-`{a}-vis cosmological and other observations. At the same time, while the LHC restarts for Run 2 at 13 TeV, there is presently a lack of direct evidence for new physics phenomena at the accelerator energy frontier. From this state of affairs arises the need for a consistent theoretical framework in which deviations from the SM predictions can be calculated and compared to precision measurements. Such a framework should be able to comprehensively make use of all measurements in all sectors of particle physics, including LHC Higgs measurements, past electroweak precision data, electric dipole moment, $g-2$, penguins and flavor physics, neutrino scattering, deep inelastic scattering, low-energy $e^{+}e^{-}$ scattering, mass measurements, and any search for physics beyond the SM. By simultaneously describing all existing measurements, this framework then becomes an intermediate step, pointing us toward the next SM, and hopefully revealing the underlying symmetries. We review the role that the standard model effective field theory (SMEFT) could play in this context, as a consistent, complete, and calculable generalization of the SM in the absence of light new physics. We discuss the relationship of the SMEFT with the existing kappa-framework for Higgs boson couplings characterization and the use of pseudo-observables, that insulate experimental results from refinements due to ever-improving calculations. The LHC context, as well as that of previous and future accelerators and experiments, is also addressed.
We consider the fully constrained version of the next-to-minimal supersymmetric extension of the standard model (cNMSSM) in which a singlet Higgs superfield is added to the two doublets that are present in the minimal extension (MSSM). Assuming unive
We describe an extension of the SOFTSUSY spectrum calculator to include two-loop supersymmetric QCD (SUSYQCD) corrections of order $mathcal{O}(alpha_s^2)$ to gluino and squark pole masses, either in the minimal supersymmetric standard model (MSSM) or
We analyze the experimental data from the search for new particles at LEP 100 and obtain mass bounds for the neutralinos of the Next--To--Minimal Supersymmetric Standard Model (NMSSM). We find that for $tanbeta gsim 5.5$ a massless neutralino is stil
flavio is an open source tool for phenomenological analyses in flavour physics and other precision observables in the Standard Model and beyond. It consists of a library to compute predictions for a plethora of observables in quark and lepton flavour
The purpose of this paper is to present a complete and consistent list of the Feynman rules for the vertices of neutralinos and Higgs bosons in the Next-To-Minimal Supersymmetric Standard Model (NMSSM), which does not yet exist in the literature. The