ترغب بنشر مسار تعليمي؟ اضغط هنا

Distribution approximations for the chemical master equation: comparison of the method of moments and the system size expansion

159   0   0.0 ( 0 )
 نشر من قبل Alexander Andreychenko
 تاريخ النشر 2015
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The stochastic nature of chemical reactions involving randomly fluctuating population sizes has lead to a growing research interest in discrete-state stochastic models and their analysis. A widely-used approach is the description of the temporal evolution of the system in terms of a chemical master equation (CME). In this paper we study two approaches for approximating the underlying probability distributions of the CME. The first approach is based on an integration of the statistical moments and the reconstruction of the distribution based on the maximum entropy principle. The second approach relies on an analytical approximation of the probability distribution of the CME using the system size expansion, considering higher-order terms than the linear noise approximation. We consider gene expression networks with unimodal and multimodal protein distributions to compare the accuracy of the two approaches. We find that both methods provide accurate approximations to the distributions of the CME while having different benefits and limitations in applications.



قيم البحث

اقرأ أيضاً

Network growth as described by the Duplication-Divergence model proposes a simple general idea for the evolution dynamics of natural networks. In particular it is an alternative to the well known Barabasi-Albert model when applied to protein-protein interaction networks. In this work we derive a master equation for the node degree distribution of networks growing via Duplication and Divergence and we obtain an expression for the total number of links and for the degree distribution as a function of the number of nodes. Using algebra tools we investigate the degree distribution asymptotic behavior. Analytic results show that the network nodes average degree converges if the total mutation rate is greater than 0.5 and diverges otherwise. Treating original and duplicated node mutation rates as independent parameters has no effect on this result. However, difference in these parameters results in a slower rate of convergence and in different degree distributions. The more different these parameters are, the denser the tail of the distribution. We compare the solutions obtained with simulated networks. These results are in good agreement with the expected values from the derived expressions. The method developed is a robust tool to investigate other models for network growing dynamics.
94 - Ramon Grima 2015
It is well known that the linear-noise approximation (LNA) exactly agrees with the chemical master equation, up to second-order moments, for chemical systems composed of zero and first-order reactions. Here we show that this is also a property of the LNA for a subset of chemical systems with second-order reactions. This agreement is independent of the number of interacting molecules.
In 2000, Gillespie rehabilitated the chemical Langevin equation (CLE) by describing two conditions that must be satisfied for it yield a valid approximation of the chemical master equation (CME). In this work, we construct an original path integral d escription of the CME, and show how applying Gillespies two conditions to it directly leads to a path integral equivalent to the CLE. We compare this approach to the path integral equivalent of a large system size derivation, and show that they are qualitatively different. In particular, both approaches involve converting many sums into many integrals, and the difference between the two methods is essentially the difference between using the Euler-Maclaurin formula and using Riemann sums. Our results shed light on how path integrals can be used to conceptualize coarse-graining biochemical systems, and are readily generalizable.
The master equation approach is proposed to describe the evolution of passengers in a subway system. With the transition rate constructed from simple geographical consideration, the evolution equation for the distribution of subway passengers is foun d to bear skew distributions including log-normal, Weibull, and power-law distributions. This approach is then applied to the Metropolitan Seoul Subway system: Analysis of the trip data of all passengers in a day reveals that the data in most cases fit well to the log-normal distributions. Implications of the results are also discussed.
We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell death). Several model parameters necessary for computer simulation were determined by reviewing and analyzing available published experimental data. By comparing experimental data to computer modelling results, we identify the parameters that are the most sensitive to the measured system properties and allow for the best data fitting. Our model allows extraction of parameters from experimental data and also has predictive power. Using the model we describe interesting time-dependent quantities that were not directly measured in the experiment, and identify correlations among the fitted parameter values. Numerical simulation of viral infection progression is done by a rate-equation approach resulting in a system of stiff equations, which are solved by using a novel variant of the stochastic ensemble modelling approach. The latter was originally developed for coupled chemical reactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا