ﻻ يوجد ملخص باللغة العربية
The stochastic nature of chemical reactions involving randomly fluctuating population sizes has lead to a growing research interest in discrete-state stochastic models and their analysis. A widely-used approach is the description of the temporal evolution of the system in terms of a chemical master equation (CME). In this paper we study two approaches for approximating the underlying probability distributions of the CME. The first approach is based on an integration of the statistical moments and the reconstruction of the distribution based on the maximum entropy principle. The second approach relies on an analytical approximation of the probability distribution of the CME using the system size expansion, considering higher-order terms than the linear noise approximation. We consider gene expression networks with unimodal and multimodal protein distributions to compare the accuracy of the two approaches. We find that both methods provide accurate approximations to the distributions of the CME while having different benefits and limitations in applications.
Network growth as described by the Duplication-Divergence model proposes a simple general idea for the evolution dynamics of natural networks. In particular it is an alternative to the well known Barabasi-Albert model when applied to protein-protein
It is well known that the linear-noise approximation (LNA) exactly agrees with the chemical master equation, up to second-order moments, for chemical systems composed of zero and first-order reactions. Here we show that this is also a property of the
In 2000, Gillespie rehabilitated the chemical Langevin equation (CLE) by describing two conditions that must be satisfied for it yield a valid approximation of the chemical master equation (CME). In this work, we construct an original path integral d
The master equation approach is proposed to describe the evolution of passengers in a subway system. With the transition rate constructed from simple geographical consideration, the evolution equation for the distribution of subway passengers is foun
We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell