ﻻ يوجد ملخص باللغة العربية
Measuring environment for large numbers of distant galaxies is still an open problem, for which we need galaxy positions and redshifts. Photometric redshifts are more easily available for large numbers of galaxies, but at the price of larger uncertainties than spectroscopic ones. In this work we study how photometric redshifts affect the measurement of galaxy environment and how this may limit an analysis of the galaxy stellar mass function (GSMF) in different environments. Using mock galaxy catalogues, we measured the environment with a fixed aperture method, using each galaxys true and photometric redshifts. We varied the fixed aperture volume parameters and the photometric redshift uncertainties. We then computed GSMF as a function of redshift and environment. We found that only when using high-precision photometric redshifts with $sigma_{Delta z/(1+z)} le 0.01$, the most extreme environments can be reconstructed in a fairly accurate way, with a fraction $ge 60div 80%$ of galaxies placed in the correct density quartile and a contamination of $le 10%$ by opposite quartile interlopers. A volume height comparable to the $pm 1.5sigma$ error of photometric redshifts grants a better reconstruction than other volume configurations. When using such an environmental measure, we found that any differences between the starting GSMF (divided accordingly to the true galaxy environment) will be damped on average of $sim 0.3$ dex when using photometric redshifts, but will be still resolvable. These results may be used to interpret real data as we obtained them in a way that is fairly independent from how well the mock catalogues reproduce the real galaxy distribution. This work represents a preparatory study for future wide area photometric redshift surveys such as the Euclid Survey and we plan to apply these results to an analysis of the GSMF in the UltraVISTA Survey in future work.
Although extensively investigated, the role of the environment in galaxy formation is still not well understood. In this context, the Galaxy Stellar Mass Function (GSMF) is a powerful tool to understand how environment relates to galaxy mass assembly
Context. Studies of galaxy pairs can provide valuable information to jointly understand the formation and evolution of galaxies and galaxy groups. Consequently, taking into account the new high precision photo-z surveys, it is important to have relia
We conduct a comprehensive study of the effects of incorporating galaxy morphology information in photometric redshift estimation. Using machine learning methods, we assess the changes in the scatter and catastrophic outlier fraction of photometric r
We present a suite of cosmological zoom-in simulations at z>5 from the Feedback In Realistic Environments project, spanning a halo mass range M_halo~10^8-10^12 M_sun at z=5. We predict the stellar mass-halo mass relation, stellar mass function, and l
Upcoming imaging surveys, such as LSST, will provide an unprecedented view of the Universe, but with limited resolution along the line-of-sight. Common ways to increase resolution in the third dimension, and reduce misclassifications, include observi