ﻻ يوجد ملخص باللغة العربية
Lattice QCD studies on fluctuations and correlations of charm quantum number have established that deconfinement of charm degrees of freedom sets in around the chiral crossover temperature, $T_c$, i.e. charm degrees of freedom carrying fractional baryonic charge start to appear. By reexamining those same lattice QCD data we show that, in addition to the contributions from quark-like excitations, the partial pressure of charm degrees of freedom may still contain significant contributions from open-charm meson and baryon-like excitations associated with integral baryonic charges for temperatures up to $1.2~ T_c$. Charm quark-quasiparticles become the dominant degrees of freedom for temperatures $T>1.2~ T_c$.
We study charm production in ultra-relativistic heavy-ion collisions by using the Parton-Hadron-String Dynamics (PHSD) transport approach. The initial charm quarks are produced by the Pythia event generator tuned to fit the transverse momentum spectr
We study the electromagnetic (e.m.) conductivity of QGP in a magnetic background by lattice simulations with $N_f = 2+1$ dynamical rooted staggered fermions at the physical point. We study the correlation functions of the e.m.~currents at $T=200,,250
Quark-gluon plasma produced at the early stage of ultrarelativistic heavy ion collisions is unstable, if weakly coupled, due to the anisotropy of its momentum distribution. Chromomagnetic fields are spontaneously generated and can reach magnitudes mu
This review cover our current understanding of strongly coupled Quark-Gluon Plasma (sQGP), especially theoretical progress in (i) explaining the RHIC data by hydrodynamics, (ii) describing lattice data using electric-magnetic duality; (iii) understan
We extract the heavy-quark diffusion coefficient kappa and the resulting momentum broadening <p^2> in a far-from-equilibrium non-Abelian plasma. We find several features in the time dependence of the momentum broadening: a short initial rapid growth