ترغب بنشر مسار تعليمي؟ اضغط هنا

Several results from numerical investigation of nonlinear waves connected to blood flow in an elastic tube of variable radius

79   0   0.0 ( 0 )
 نشر من قبل Zlatinka Dimitrova
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate flow of incompressible fluid in a cylindrical tube with elastic walls. The radius of the tube may change along its length. The discussed problem is connected to the blood flow in large human arteries and especially to nonlinear wave propagation due to the pulsations of the heart. The long-wave approximation for modeling of waves in blood is applied. The obtained model Korteweg-deVries equation possessing a variable coefficient is reduced to a nonlinear dynamical system of 3 first order differential equations. The low probability of arising of a solitary wave is shown. Periodic wave solutions of the model system of equations are studied and it is shown that the waves that are consequence of the irregular heart pulsations may be modeled by a sequence of parts of such periodic wave solutions.



قيم البحث

اقرأ أيضاً

84 - Prateek Gupta 2021
We begin with the theoretical study of spectral energy cascade due to the propagation of high amplitude sound in the absence of thermal sources. To this end, a first-principles-based system of governing equations, correct up to second order in pertur bation variables is derived. The exact energy corollary of such second-order system of equations is then formulated and used to elucidate the spectral energy dynamics of nonlinear acoustic waves. We then extend this analysis to thermoacoustically unstable waves -- i.e. amplified as a result of thermoacoustic instability. We drive such instability up until the generation of shock waves. We further study the nonlinear wave propagation in geometrically complex case of waves induced by the spark plasma between the electrodes. This case adds the geometrical complexity of a curved, three-dimensional shock, yielding vorticity production due to baroclinic torque. Finally, detonation waves are simulated by using a low-order approach, in a periodic setup subjected to high pressure inlet and exhaust of combustible gaseous mixture. An order adaptive fully compressible and unstructured Navier Stokes solver is currently under development to enable higher fidelity studies of both the spark plasma and detonation wave problem in the future.
Cardiovascular diseases, specifically cerebral aneurysms, represent a major cause of morbidity and mortality, having a significant impact on the cost and overall status of health care. In the present work, we employ a haemorheological blood model ori ginally proposed by Owens to investigate the haemodynamics of blood flow through an aneurytic channel. This constitutive equation for whole human blood is derived using ideas drawn from temporary polymer network theory to model the aggregation and disaggregation of erythrocytes in normal human blood at different shear rates. To better understand the effect of rheological models on the haemodynamics of blood flow in cerebral aneurysms we compare our numerical results with those obtained with other rheological models such as the Carreau-Yasuda (C-Y) model. The results show that the velocity profiles for the Newtonian and the Owens models are approximately similar but differ from those of the C-Y model. In order to stabilize our numerical simulations, we propose two new stabilization techniques, the so-called N-Owens and I-Owens methods. Employing the N-Owens stabilization method enables us to capture the effect of erythrocyte aggregation in blood flow through a cerebral aneurysm at higher Weissenberg (We) and Reynolds (Re) numbers than would otherwise be possible.
We show experimentally that a stable wave propagating into a region characterized by an opposite current may become modulationaly unstable. Experiments have been performed in two independent wave tank facilities; both of them are equipped with a wave maker and a pump for generating a current propagating in the opposite direction with respect to the waves. The experimental results support a recent conjecture based on a current-modified Nonlinear Schrodinger equation which establishes that rogue waves can be triggered by non-homogeneous current characterized by a negative horizontal velocity gradient.
251 - Zhou Zhang , Yulin Pan 2021
In this paper, we numerically study the wave turbulence of surface gravity waves in the framework of Euler equations of the free surface. The purpose is to understand the variation of the scaling of the spectra with wavenumber $k$ and energy flux $P$ at different nonlinearity levels under different forcing/free-decay conditions. For all conditions (free decay, narrow- and broadband forcing) we consider, we find that the spectral forms approach wave turbulence theory (WTT) solution $S_etasim k^{-5/2}$ and $S_etasim P^{1/3}$ at high nonlinearity levels. With the decrease of nonlinearity level, the spectra for all cases become steeper, with the narrow-band forcing case exhibiting the most rapid deviation from WTT. To interpret these spectral variations, we further investigate two hypothetical and disputable mechanisms about bound waves and finite-size effect. Through a tri-coherence analysis, we find that the finite-size effect is present in all cases, which is responsible for the overall steepening of the spectra and reduced capacity of energy flux at lower nonlinearity levels. The fraction of bound waves in the domain generally decreases with the decrease of nonlinearity level, except for the narrow-band case, which exhibits a transition at some critical nonlinearity level below which a rapid increase is observed. This increase serves as the main reason for the fastest deviation from WTT with the decrease of nonlinearity in the narrow-band forcing case.
243 - Bruno Lombard 2013
Acoustic wave propagation in a one-dimensional waveguide connected with Helmholtz resonators is studied numerically. Finite amplitude waves and viscous boundary layers are considered. The model consists of two coupled evolution equations: a nonlinear PDE describing nonlinear acoustic waves, and a linear ODE describing the oscillations in the Helmholtz resonators. The thermal and viscous losses in the tube and in the necks of the resonators are modeled by fractional derivatives. A diffusive representation is followed: the convolution kernels are replaced by a finite number of memory variables that satisfy local ordinary differential equations. A splitting method is then applied to the evolution equations: their propagative part is solved using a standard TVD scheme for hyperbolic equations, whereas their diffusive part is solved exactly. Various strategies are examined to compute the coefficients of the diffusive representation; finally, an optimization method is preferred to the usual quadrature rules. The numerical model is validated by comparisons with exact solutions. The properties of the full nonlinear solutions are investigated numerically. In particular, the existence of acoustic solitary waves is confirmed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا