ﻻ يوجد ملخص باللغة العربية
Spin injection efficiency based on conventional and/or half-metallic ferromagnet/semiconductor is greatly limited by the Schmidt obstacle due to conductivity mismatch, here we proposed that by replacing the metallic injectors with spin gapless semiconductors can significantly reduce the conductive mismatch to enhance spin injection efficiency. By performing first principles calculations based on superlattice structure, we have studied the representative system of Mn2CoAl/semiconductor spin injector scheme. The results showed that a high spin polarization was maintained at the interface in systems of Mn2CoAl/Fe2VAl constructed with (100) interface and Mn2CoAl/GaAs with (110) interface, and the latter is expected to possess long spin diffusion length. Inherited from the spin gapless feature of Mn2CoAl, a pronounced dip was observed around the Fermi level in the majority-spin density-of-states in both systems, suggesting fast transport of the low-density carriers.
Employing first principles electronic structure calculations in conjunction with the frozen-magnon method we calculate exchange interactions, spin-wave dispersion, and spin-wave stiffness constants in inverse-Heusler-based spin gapless semiconductor
We derive a drift-diffusion equation for spin polarization in semiconductors by consistently taking into account electric-field effects and nondegenerate electron statistics. We identify a high-field diffusive regime which has no analogue in metals.
The Ohmic spin diode (OSD) is a recent concept in spintronics, which is based on half-metallic magnets (HMMs) and spin-gapless semiconductors (SGSs). Quaternary Heusler compounds offer a unique platform to realize the OSD for room temperature applica
Paramagnetic molecules can show long spin-coherence times, which make them good candidates as quantum bits. Reducing the efficiency of the spin-phonon interaction is the primary challenge towards achieving long coherence times over a wide temperature
Based on high throughput density functional theory calculations, we performed systematic screening for spin-gapless semiconductors (SGSs) in quaternary Heusler alloys XX 0 YZ (X, X 0 , and Y are transition metal elements without Tc, and Z is one of B