ﻻ يوجد ملخص باللغة العربية
We extend the recently introduced Bayesian framework `Generative Pulsar Timing Analysis to incorporate both pulse jitter (high frequency variation in the arrival time of the pulse) and epoch to epoch stochasticity in the shape of the pulse profile. This framework allows for a full timing analysis to be performed on the folded profile data, rather than the site arrival times as is typical in most timing studies. We apply this extended framework both to simulations, and to an 11 yr, 10 cm data set for PSR J1909$-$3744. Using simulations, we show that temporal profile variation can induce timing noise in the residuals that when performing a standard timing analysis is highly covariant with the signal expected from a gravitational wave (GW) background. When working in the profile domain, these variations are de-correlated from the expected GW signal, resulting in significant improvement in the obtained upper limits. Using the PSR J1909$-$3744 data set from the Parkes Pulsar Timing Array project, we find significant evidence for systematic high-frequency profile variation resulting from non-Gaussian noise in the oldest observing system, but no evidence for either detectable pulse jitter, or low-frequency profile shape variation. Using our profile domain framework we therefore obtain upper limits on a red noise process with a spectral index of $gamma = 13/3$ of $1times10^{-15}$, consistent with previously published limits.
Pulsating thermal X-ray emission from millisecond pulsars can be used to obtain constraints on the neutron star equation of state, but to date only five such sources have been identified. Of these five millisecond pulsars, only two have well constrai
We report on a high-precision timing analysis and an astrophysical study of the binary millisecond pulsar, PSR J1909$-$3744, motivated by the accumulation of data with well improved quality over the past decade. Using 15 years of observations with th
Propagation effects in the interstellar medium and intrinsic profile changes can cause variability in the timing of pulsars, which limits the accuracy of fundamental science done via pulsar timing. One of the best timing pulsars, PSR J1713+0747, has
PSR J1713+0747 is one of the most precisely timed pulsars in the international pulsar timing array experiment. This pulsar showed an abrupt profile shape change between April 16, 2021 (MJD 59320) and April 17, 2021 (MJD 59321). In this paper, we repo
The Double Pulsar, PSR J$0737$$-$$3039$A/B, is a unique system in which both neutron stars have been detected as radio pulsars. As shown in Ferdman et al., there is no evidence for pulse profile evolution of the A pulsar, and the geometry of the puls