ترغب بنشر مسار تعليمي؟ اضغط هنا

$mathcal{PT}$-symmetric currents of a Bose-Einstein condensate in a triple well

144   0   0.0 ( 0 )
 نشر من قبل Daniel Haag
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the case of $mathcal{PT}$-symmetric perturbations of Hermitian Hamiltonians with degenerate eigenvalues using the example of a triple-well system. The degeneracy complicates the question, whether or not a stationary current through such a system can be established, i.e. whether or not the $mathcal{PT}$-symmetric states are stable. It is shown that this is only the case for perturbations that do not couple to any of the degenerate states. The physical explanation for the inhibition of stable currents is discussed. However, introducing an on-site interaction restores the capability to support stable currents.



قيم البحث

اقرأ أيضاً

The most important properties of a Bose-Einstein condensate subject to balanced gain and loss can be modelled by a Gross-Pitaevskii equation with an external $mathcal{PT}$-symmetric double-delta potential. We study its linear variant with a supersymm etric extension. It is shown that both in the $mathcal{PT}$-symmetric as well as in the $mathcal{PT}$-broken phase arbitrary stationary states can be removed in a supersymmetric partner potential without changing the energy eigenvalues of the other state. The characteristic structure of the singular delta potential in the supersymmetry formalism is discussed, and the applicability of the formalism to the nonlinear Gross-Pitaevskii equation is analysed. In the latter case the formalism could be used to remove $mathcal{PT}$-broken states introducing an instability to the stationary $mathcal{PT}$-symmetric states.
PT-symmetric quantum mechanics allows finding stationary states in mean-field systems with balanced gain and loss of particles. In this work we apply this method to rotating Bose-Einstein condensates with contact interaction which are known to suppor t ground states with vortices. Due to the particle exchange with the environment transport phenomena through ultracold gases with vortices can be studied. We find that even strongly interacting rotating systems support stable PT-symmetric ground states, sustaining a current parallel and perpendicular to the vortex cores. The vortices move through the non-uniform particle density and leave or enter the condensate through its borders creating the required net current.
We investigate dipolar Bose-Einstein condensates in a complex external double-well potential that features a combined parity and time-reversal symmetry. On the basis of the Gross-Pitaevskii equation we study the effects of the long-ranged anisotropic dipole-dipole interaction on ground and excited states by the use of a time-dependent variational approach. We show that the property of a similar non-dipolar condensate to possess real energy eigenvalues in certain parameter ranges is preserved despite the inclusion of this nonlinear interaction. Furthermore, we present states that break the PT symmetry and investigate the stability of the distinct stationary solutions. In our dynamical simulations we reveal a complex stabilization mechanism for PT-symmetric, as well as for PT-broken states which are, in principle, unstable with respect to small perturbations.
We investigate vortex excitations in dilute Bose-Einstein condensates in the presence of complex $mathcal{PT}$-symmetric potentials. These complex potentials are used to describe a balanced gain and loss of particles and allow for an easier calculati on of stationary states in open systems than in a full dynamical calculation including the whole environment. We examine the conditions under which stationary vortex states can exist and consider transitions from vortex to non-vortex states. In addition, we study the influences of $mathcal{PT}$ symmetry on the dynamics of non-stationary vortex states placed at off-center positions.
A Bose-Einstein condensate in a double-well potential features stationary solutions even for attractive contact interaction as long as the particle number and therefore the interaction strength do not exceed a certain limit. Introducing balanced gain and loss into such a system drastically changes the bifurcation scenario at which these states are created. Instead of two tangent bifurcations at which the symmetric and antisymmetric states emerge, one tangent bifurcation between two formerly independent branches arises [D. Haag et al., Phys. Rev. A 89, 023601 (2014)]. We study this transition in detail using a bicomplex formulation of the time-dependent variational principle and find that in fact there are three tangent bifurcations for very small gain-loss contributions which coalesce in a cusp bifurcation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا