ترغب بنشر مسار تعليمي؟ اضغط هنا

Elasticity dominated surface segregation of small molecules in polymer mixtures

206   0   0.0 ( 0 )
 نشر من قبل Buddhapriya Chakrabarti
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the phenomenon of migration of the small molecular weight component of a binary polymer mixture to the free surface using mean field and self-consistent field theories. By proposing a free energy functional that incorporates polymer-matrix elasticity explicitly, we compute the migrant volume fraction and show that it decreases significantly as the sample rigidity is increased. Estimated values of the bulk modulus suggest that the effect should be observable experimentally for rubber-like materials. This provides a simple way of controlling surface migration in polymer mixtures and can play an important role in industrial formulations, where surface migration often leads to decreased product functionality.



قيم البحث

اقرأ أيضاً

Surface segregation of the low-molecular weight component in a polymeric mixture leads to degradation of industrial formulations. We report a simultaneous phase separation and surface migration phenomena in oligomer-polymer and oligomer-gel systems f ollowing a temperature quench. We compute equilibrium and time varying migrant density profiles and wetting layer thickness using coarse grained molecular dynamics and mesoscale hydrodynamics simulations to demonstrate that surface migration in oligomer-gel systems is significantly reduced due to network elasticity. Further, phase separation processes are significantly slowed in gels, modifying the Lifshitz-Slyozov-Wagner (LSW) law $ell(tau) sim tau^{1/3}$. Our work allows for rational design of polymer/gel-oligomer mixtures with predictable surface segregation characteristics.
Diffusive transport of small molecules within the internal structures of biological and synthetic material systems is complex because the crowded environment presents chemical and physical barriers to mobility. We explored this mobility using a synth etic experimental system of small dye molecules diffusing within a polymer network at short time scales. We find that the diffusion of inert molecules is inhibited by the presence of the polymers. Counter-intuitively, small, hydrophobic molecules display smaller reduction in mobility and also able to diffuse faster through the system by leveraging crowding specific parameters. We explained this phenomenon by developing a de novo model and using these results, we hypothesized that non-specific hydrophobic interactions between the molecules and polymer chains could localize the molecules into compartments of overlapped and entangled chains where they experience microviscosity, rather than macroviscosity. We introduced a characteristic interaction time parameter to quantitatively explain experimental results in the light of frictional effects and molecular interactions. Our model is in good agreement with the experimental results and allowed us to classify molecules into two different mobility categories solely based on interaction. By changing the surface group, polymer molecular weight, and by adding salt to the medium, we could further modulate the mobility and mean square displacements of interacting molecules. Our work has implications in understanding intracellular diffusive transport in microtubule networks and other systems with macromolecular crowding and could lead to transport enhancement in synthetic polymer systems.
Due to their unique structural and mechanical properties, randomly-crosslinked polymer networks play an important role in many different fields, ranging from cellular biology to industrial processes. In order to elucidate how these properties are con trolled by the physical details of the network (textit{e.g.} chain-length and end-to-end distributions), we generate disordered phantom networks with different crosslinker concentrations $C$ and initial density $rho_{rm init}$ and evaluate their elastic properties. We find that the shear modulus computed at the same strand concentration for networks with the same $C$, which determines the number of chains and the chain-length distribution, depends strongly on the preparation protocol of the network, here controlled by $rho_{rm init}$. We rationalise this dependence by employing a generic stress-strain relation for polymer networks that does not rely on the specific form of the polymer end-to-end distance distribution. We find that the shear modulus of the networks is a non-monotonic function of the density of elastically-active strands, and that this behaviour has a purely entropic origin. Our results show that if short chains are abundant, as it is always the case for randomly-crosslinked polymer networks, the knowledge of the exact chain conformation distribution is essential for predicting correctly the elastic properties. Finally, we apply our theoretical approach to published experimental data, qualitatively confirming our interpretations.
Applications of commodity polymers are often hindered by their low thermal conductivity. In these systems, going from the standard polymers dictated by weak van der Waals interactions to biocompatible hydrogen bonded smart polymers, the thermal trans port coefficient k varies between 0.1 - 0.4 W/Km. Combining all-atom molecular dynamics simulations with some experiments, we study thermal transport and its link to the elastic response of commodity plastics. We find that there exists a maximum attainable stiffness (or sound wave velocity), thus providing an upper bound of k for these solid polymers. The specific chemical structure and the glass transition temperature play no role in controlling k, especially when the microscopic interactions are hydrogen bonding based. Our results are consistent with the minimum thermal conductivity model and existing experiments. The effect of polymer stretching on k is also discussed.
253 - M. Watzlawek , C. N. Likos , 1999
The phase diagram of star polymer solutions in a good solvent is obtained over a wide range of densities and arm numbers by Monte Carlo simulations. The effective interaction between the stars is modeled by an ultrasoft pair potential which is logari thmic in the core-core distance. Among the stable phases are a fluid as well as body-centered cubic, face-centered cubic, body-centered orthogonal, and diamond crystals. In a limited range of arm numbers, reentrant melting and reentrant freezing transitions occur for increasing density.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا