ﻻ يوجد ملخص باللغة العربية
Neutral-meson mixing is loop suppressed in the Standard Model, leading to the possibility of enhanced sensitivity to new physics. The uncertainty in Standard Model predictions for $B$-meson oscillation frequencies is dominated by theoretical uncertainties within the short-distance $B$-meson hadronic matrix elements, motivating the need for improved precision. In $D$-meson mixing, the Standard Model short-distance contributions are further suppressed by the GIM mechanism allowing for the possibility of large new physics enhancements. A first-principle determination of the $D$-meson short-distance hadronic matrix elements will allow for model-discrimination between the new physics theories. I review recently published and ongoing lattice calculations of hadronic matrix elements in $B$ and $D$-meson mixing with emphasis on the Fermilab lattice and MILC collaboration effort on the determination of the $B$ and $D$-meson mixing hadronic matrix elements using the methods of lattice QCD.
We study $B_d$ and $B_s$ mixing in unquenched lattice QCD employing the MILC collaboration gauge configurations that include u, d, and s sea quarks based on the improved staggered quark (AsqTad) action and a highly improved gluon action. We implement
We calculate in three-flavor lattice QCD the short-distance hadronic matrix elements of all five $Delta C=2$ four-fermion operators that contribute to neutral $D$-meson mixing both in and beyond the Standard Model. We use the MILC Collaborations $N_f
We calculate the bag parameters for neutral $B$-meson mixing in and beyond the Standard Model, in full four-flavour lattice QCD for the first time. We work on gluon field configurations that include the effect of $u$, $d$, $s$ and $c$ sea quarks with
We report on our on-going project to calculate proton decay matrix elements using domain-wall fermions on the lattice. By summarizing the history of the proton decay calculation on the lattice, we reveal the systematic errors of those calculations. T
We present a model-independent calculation of hadron matrix elements for all dimension-six operators associated with baryon number violating processes using lattice QCD. The calculation is performed with the Wilson quark action in the quenched approx