ترغب بنشر مسار تعليمي؟ اضغط هنا

Stationary random graphs with prescribed iid degrees on a spatial Poisson process

93   0   0.0 ( 0 )
 نشر من قبل Maria Deijfen
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English
 تأليف Maria Deijfen




اسأل ChatGPT حول البحث

Let $[mathcal{P}]$ be the points of a Poisson process on $mathbb{R}^d$ and $F$ a probability distribution with support on the non-negative integers. Models are formulated for generating translation invariant random graphs with vertex set $[mathcal{P}]$ and iid vertex degrees with distribution $F$, and the length of the edges is analyzed. The main result is that finite mean for the total edge length per vertex is possible if and only if $F$ has finite moment of order $(d+1)/d$.



قيم البحث

اقرأ أيضاً

We prove a $pre$-$asymptotic$ bound on the total variation distance between the uniform distribution over two types of undirected graphs with $n$ nodes. One distribution places a prescribed number of $k_T$ triangles and $k_S$ edges not involved in a triangle independently and uniformly over all possibilities, and the other is the uniform distribution over simple graphs with exactly $k_T$ triangles and $k_S$ edges not involved in a triangle. As a corollary, for $k_S = o(n)$ and $k_T = o(n)$ as $n$ tends to infinity, the total variation distance tends to $0$, at a rate that is given explicitly. Our main tool is Chen-Stein Poisson approximation, hence our bounds are explicit for all finite values of the parameters.
We study the growth of two competing infection types on graphs generated by the configuration model with a given degree sequence. Starting from two vertices chosen uniformly at random, the infection types spread via the edges in the graph in that an uninfected vertex becomes type 1 (2) infected at rate $lambda_1$ ($lambda_2$) times the number of nearest neighbors of type 1 (2). Assuming (essentially) that the degree of a randomly chosen vertex has finite second moment, we show that if $lambda_1=lambda_2$, then the fraction of vertices that are ultimately infected by type 1 converges to a continuous random variable $Vin(0,1)$, as the number of vertices tends to infinity. Both infection types hence occupy a positive (random) fraction of the vertices. If $lambda_1 eq lambda_2$, on the other hand, then the type with the larger intensity occupies all but a vanishing fraction of the vertices. Our results apply also to a uniformly chosen simple graph with the given degree sequence.
In this paper we deal with the classical problem of random cover times. We investigate the distribution of the time it takes for a Poisson process of cylinders to cover a set $A subset mathbb{R}^d.$ This Poisson process of cylinders is invariant unde r rotations, reflections and translations, and in addition we add a time component so that cylinders are raining from the sky at unit rate. Our main results concerns the asymptotic of this cover time as the set $A$ grows. If the set $A$ is discrete and well separated, we show convergence of the cover time to a Gumbel distribution. If instead $A$ has positive box dimension (and satisfies a weak additional assumption), we find the correct rate of convergence.
We construct a pair of related diffusions on a space of interval partitions of the unit interval $[0,1]$ that are stationary with the Poisson-Dirichlet laws with parameters (1/2,0) and (1/2,1/2) respectively. These are two particular cases of a gener al construction of such processes obtained by decorating the jumps of a spectrally positive Levy process with independent squared Bessel excursions. The processes of ranked interval lengths of our partitions are members of a two parameter family of diffusions introduced by Ethier and Kurtz (1981) and Petrov (2009). The latter diffusions are continuum limits of up-down Markov chains on Chinese restaurant processes. Our construction is also a step towards describing a diffusion on the space of real trees whose existence has been conjectured by Aldous.
The key to our investigation is an improved (and in a sense sharp) understanding of the survival time of the contact process on star graphs. Using these results, we show that for the contact process on Galton-Watson trees, when the offspring distribu tion (i) is subexponential the critical value for local survival $lambda_2=0$ and (ii) when it is geometric($p$) we have $lambda_2 le C_p$, where the $C_p$ are much smaller than previous estimates. We also study the critical value $lambda_c(n)$ for prolonged persistence on graphs with $n$ vertices generated by the configuration model. In the case of power law and stretched exponential distributions where it is known $lambda_c(n) to 0$ we give estimates on the rate of convergence. Physicists tell us that $lambda_c(n) sim 1/Lambda(n)$ where $Lambda(n)$ is the maximum eigenvalue of the adjacency matrix. Our results show that this is not correct.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا