ﻻ يوجد ملخص باللغة العربية
Deep neural networks currently demonstrate state-of-the-art performance in several domains. At the same time, models of this class are very demanding in terms of computational resources. In particular, a large amount of memory is required by commonly used fully-connected layers, making it hard to use the models on low-end devices and stopping the further increase of the model size. In this paper we convert the dense weight matrices of the fully-connected layers to the Tensor Train format such that the number of parameters is reduced by a huge factor and at the same time the expressive power of the layer is preserved. In particular, for the Very Deep VGG networks we report the compression factor of the dense weight matrix of a fully-connected layer up to 200000 times leading to the compression factor of the whole network up to 7 times.
We introduce a method to train Binarized Neural Networks (BNNs) - neural networks with binary weights and activations at run-time and when computing the parameters gradient at train-time. We conduct two sets of experiments, each based on a different
Driven by the outstanding performance of neural networks in the structured Euclidean domain, recent years have seen a surge of interest in developing neural networks for graphs and data supported on graphs. The graph is leveraged at each layer of the
Recurrent neural networks (RNNs) are notoriously difficult to train. When the eigenvalues of the hidden to hidden weight matrix deviate from absolute value 1, optimization becomes difficult due to the well studied issue of vanishing and exploding gra
Deep neural networks (DNNs) have achieved outstanding performance in a wide range of applications, e.g., image classification, natural language processing, etc. Despite the good performance, the huge number of parameters in DNNs brings challenges to
The high computation, memory, and power budgets of inferring convolutional neural networks (CNNs) are major bottlenecks of model deployment to edge computing platforms, e.g., mobile devices and IoT. Moreover, training CNNs is time and energy-intensiv