ترغب بنشر مسار تعليمي؟ اضغط هنا

Propagation of the 7 January 2014 CME and Resulting Geomagnetic Non-Event

302   0   0.0 ( 0 )
 نشر من قبل M. Leila Mays
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

On 7 January 2014 an X1.2 flare and CME with a radial speed $approx$2500 km s$^{-1}$ was observed from near an active region close to disk center. This led many forecasters to estimate a rapid arrival at Earth ($approx$36 hours) and predict a strong geomagnetic storm. However, only a glancing CME arrival was observed at Earth with a transit time of $approx$49 hours and a $K_{rm P}$ geomagnetic index of only $3-$. We study the interplanetary propagation of this CME using the ensemble Wang-Sheeley-Arge (WSA)-ENLIL+Cone model, that allows a sampling of CME parameter uncertainties. We explore a series of simulations to isolate the effects of the background solar wind solution, CME shape, tilt, location, size, and speed, and the results are compared with observed in-situ arrivals at Venus, Earth, and Mars. Our results show that a tilted ellipsoid CME shape improves the initial real-time prediction to better reflect the observed in-situ signatures and the geomagnetic storm strength. CME parameters from the Graduated Cylindrical Shell model used as input to WSA--ENLIL+Cone, along with a tilted ellipsoid cloud shape, improve the arrival-time error by 14.5, 18.7, 23.4 hours for Venus, Earth, and Mars respectively. These results highlight that CME orientation and directionality with respect to observatories play an important role in understanding the propagation of this CME, and for forecasting other glancing CME arrivals. This study also demonstrates the importance of three-dimensional CME fitting made possible by multiple viewpoint imaging.



قيم البحث

اقرأ أيضاً

Coronal mass ejections (CMEs) erupt and expand in a magnetically structured solar corona. Various indirect observational pieces of evidence have shown that the magnetic field of CMEs reconnects with surrounding magnetic fields, forming, e.g., dimming regions distant from the CME source regions. Analyzing Solar Dynamics Observatory (SDO) observations of the eruption from AR 11226 on 2011 June 7, we present the first direct evidence of coronal magnetic reconnection between the fields of two adjacent ARs during a CME. The observations are presented jointly with a data-constrained numerical simulation, demonstrating the formation/intensification of current sheets along a hyperbolic flux tube (HFT) at the interface between the CME and the neighbouring AR 11227. Reconnection resulted in the formation of new magnetic connections between the erupting magnetic structure from AR 11226 and the neighboring active region AR 11227 about 200 Mm from the eruption site. The onset of reconnection first becomes apparent in the SDO/AIA images when filament plasma, originally contained within the erupting flux rope, is re-directed towards remote areas in AR 11227, tracing the change of large-scale magnetic connectivity. The location of the coronal reconnection region becomes bright and directly observable at SDO/AIA wavelengths, owing to the presence of down-flowing cool, dense (10^{10} cm^{-3}) filament plasma in its vicinity. The high-density plasma around the reconnection region is heated to coronal temperatures, presumably by slow-mode shocks and Coulomb collisions. These results provide the first direct observational evidence that CMEs reconnect with surrounding magnetic structures, leading to a large-scale re-configuration of the coronal magnetic field.
An unexpected strong geomagnetic storm occurred on 2018 August 26, which was caused by a slow coronal mass ejection (CME) from a gradual eruption of a large quiet-region filament. We investigate the eruption and propagation characteristics of this CM E in relation to the strong geomagnetic storm with remote sensing and in situ observations. Coronal magnetic fields around the filament are extrapolated and compared with EUV observations. We determine the propagation direction and tilt angle of the CME flux rope near the Sun using a graduated cylindrical shell (GCS) model and the Sun-to-Earth kinematics of the CME with wide-angle imaging observations from STEREO A. We reconstruct the flux-rope structure using a Grad-Shafranov technique based on the in situ measurements at the Earth and compare it with those from solar observations and the GCS results. Our conclusions are as follows: (1) the eruption of the filament was unusually slow and occurred in the regions with relatively low critical heights of the coronal field decay index; (2) the axis of the CME flux rope rotated in the corona as well as in interplanetary space, which tended to be aligned with the local heliospheric current sheet; (3) the CME was bracketed between slow and fast solar winds, which enhanced the magnetic field inside the CME at 1 AU; (4) the geomagnetic storm was caused by the enhanced magnetic field and a southward orientation of the flux rope at 1 AU from the rotation of the flux rope.
Coronal mass ejections (CMEs) are the primary sources of intense disturbances at Earth, where their geo-effectiveness is largely determined by their dynamic pressure and internal magnetic field, which can be significantly altered during interactions with other CMEs in interplanetary space. We analyse three successive CMEs that erupted from the Sun during September 4-6, 2017, investigating the role of CME-CME interactions as source of the associated intense geomagnetic storm (Dst_min=-142 nT on September 7). To quantify the impact of interactions on the (geo-)effectiveness of individual CMEs, we perform global heliospheric simulations with the EUHFORIA model, using observation-based initial parameters with the additional purpose of validating the predictive capabilities of the model for complex CME events. The simulations show that around 0.45 AU, the shock driven by the September 6 CME started compressing a preceding magnetic ejecta formed by the merging of two CMEs launched on September 4, significantly amplifying its Bz until a maximum factor of 2.8 around 0.9 AU. The following gradual conversion of magnetic energy into kinetic and thermal components reduced the Bz amplification until its almost complete disappearance around 1.8 AU. We conclude that a key factor at the origin of the intense storm triggered by the September 4-6, 2017 CMEs was their arrival at Earth during the phase of maximum Bz amplification. Our analysis highlights how the amplification of the magnetic field of individual CMEs in space-time due to interaction processes can be characterised by a growth, a maximum, and a decay phase, suggesting that the time interval between the CME eruptions and their relative speeds are critical factors in determining the resulting impact of complex CMEs at various heliocentric distances (helio-effectiveness).
We study the interaction of two successive coronal mass ejections (CMEs) during the 2010 August 1 events using STEREO/SECCHI COR and HI data. We obtain the direction of motion for both CMEs by applying several independent reconstruction methods and f ind that the CMEs head in similar directions. This provides evidence that a full interaction takes place between the two CMEs that can be observed in the HI1 field-of-view. The full de-projected kinematics of the faster CME from Sun to Earth is derived by combining remote observations with in situ measurements of the CME at 1 AU. The speed profile of the faster CME (CME2; ~1200 km/s) shows a strong deceleration over the distance range at which it reaches the slower, preceding CME (CME1; ~700 km/s). By applying a drag-based model we are able to reproduce the kinematical profile of CME2 suggesting that CME1 represents a magnetohydrodynamic obstacle for CME2 and that, after the interaction, the merged entity propagates as a single structure in an ambient flow of speed and density typical for quiet solar wind conditions. Observational facts show that magnetic forces may contribute to the enhanced deceleration of CME2. We speculate that the increase in magnetic tension and pressure, when CME2 bends and compresses the magnetic field lines of CME1, increases the efficiency of drag.
We investigate the relationship between the main acceleration phase of coronal mass ejections (CMEs) and the particle acceleration in the associated flares as evidenced in RHESSI non-thermal X-rays for a set of 37 impulsive flare-CME events. CME peak velocity and peak acceleration yield distinct correlations with various parameters characterizing the flare-accelerated electron spectra. The highest correlation coefficient is obtained for the relation of the CME peak velocity and the total energy in accelerated electrons (c = 0.85), supporting the idea that the acceleration of the CME and the particle acceleration in the associated flare draw their energy from a common source, probably magnetic reconnection in the current sheet behind the erupting structure. In general, the CME peak velocity shows somewhat higher correlations with the non-thermal flare parameters than the CME peak acceleration, except for the spectral index of the accelerated electron spectrum which yields a higher correlation with the CME peak acceleration (c = -0.6), indicating that the hardness of the flare-accelerated electron spectrum is tightly coupled to the impulsive acceleration process of the rising CME structure. We also obtained high correlations between the CME initiation height $h_0$ and the non-thermal flare parameters, with the highest correlation of $h_0$ to the spectral index of flare-accelerated electrons (c = 0.8). This means that CMEs erupting at low coronal heights, i.e. in regions of stronger magnetic fields, are accompanied with flares which are more efficient to accelerate electrons to high energies. In the majority of events (80%), the non-thermal flare emission starts after the CME acceleration (6 min), giving a current sheet length at the onset of magnetic reconnection of 21 pm 7 Mm. The flare HXR peaks are well synchronized with the peak of the CME acceleration profile.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا