ترغب بنشر مسار تعليمي؟ اضغط هنا

General Cheeger inequalities for p-Laplacians on graphs

55   0   0.0 ( 0 )
 نشر من قبل Delio Mugnolo
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove Cheeger inequalities for p-Laplacians on finite and infinite weighted graphs. Unlike in previous works, we do not impose boundedness of the vertex degree, nor do we restrict ourselves to the normalized Laplacian and, more generally, we do not impose any boundedness assumption on the geometry. This is achieved by a novel definition of the measure of the boundary which is using the idea of intrinsic metrics. For the non-normalized case, our bounds on the spectral gap of p-Laplacians are already significantly better for finite graphs and for infinite graphs they yield non-trivial bounds even in the case of unbounded vertex degree. We, furthermore, give upper bounds by the Cheeger constant and by the exponential volume growth of distance balls.



قيم البحث

اقرأ أيضاً

Given a graph with a designated set of boundary vertices, we define a new notion of a Neumann Laplace operator on a graph using a reflection principle. We show that the first eigenvalue of this Neumann graph Laplacian satisfies a Cheeger inequality.
In this paper we study the best constant in a Hardy inequality for the p-Laplace operator on convex domains with Robin boundary conditions. We show, in particular, that the best constant equals $((p-1)/p)^p$ whenever Dirichlet boundary conditions are imposed on a subset of the boundary of non-zero measure. We also discuss some generalizations to non-convex domains.
237 - Bobo Hua , Lili Wang 2018
In this paper, we study eigenvalues and eigenfunctions of $p$-Laplacians with Dirichlet boundary condition on graphs. We characterize the first eigenfunction (and the maximum eigenfunction for a bipartite graph) via the sign condition. By the uniquen ess of the first eigenfunction of $p$-Laplacian, as $pto 1,$ we identify the Cheeger constant of a symmetric graph with that of the quotient graph. By this approach, we calculate various Cheeger constants of spherically symmetric graphs.
We introduce a family of multi-way Cheeger-type constants ${h_k^{sigma}, k=1,2,ldots, n}$ on a signed graph $Gamma=(G,sigma)$ such that $h_k^{sigma}=0$ if and only if $Gamma$ has $k$ balanced connected components. These constants are switching invari ant and bring together in a unified viewpoint a number of important graph-theoretical concepts, including the classical Cheeger constant, those measures of bipartiteness introduced by Desai-Rao, Trevisan, Bauer-Jost, respectively, on unsigned graphs,, and the frustration index (originally called the line index of balance by Harary) on signed graphs. We further unify the (higher-order or improved) Cheeger and dual Cheeger inequalities for unsigned graphs as well as the underlying algorithmic proof techniques by establishing their correspondi
299 - Amit Einav , Michael Loss 2011
The sharp trace inequality of Jose Escobar is extended to traces for the fractional Laplacian on R^n and a complete characterization of cases of equality is discussed. The proof proceeds via Fourier transform and uses Liebs sharp form of the Hardy-Littlewood-Sobolev inequality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا